DuPont™ Vertisan® fungicide (penthiopyrad)

- Group 7 mode of action (FRAC), SDHI (succinate dehydrogenase inhibitor)
- Broad-spectrum control of foliar and soil-borne diseases
- Labeled for use on sunflower,* canola,* cereals,** corn,* cotton,* legume vegetables,* soybean,* sugar beet,* potatoes
- Soil application: cotton, sugar beet, potatoes, sweet potatoes and yams
- Application and harvest flexibility: Apply by ground, air and chemigation
- MRLs in place
- Signal word = CAUTION, 12-hour reentry interval

A fungicide with residual, preventive and post-infection activity:

- High potency
- Preventive, curative and residual activity
- Movement within the plant: translaminar and local systemic
- Redistribution within the canopy
- Rainfast in 1 hour
- Opportunity for higher yields and improved quality from disease control
- Plant health effects observed in research studies

DuPont™ Vertisan® fungicide is labeled on sunflowers for the following diseases:

<table>
<thead>
<tr>
<th>Crop</th>
<th>Diseases controlled</th>
<th>Product rate</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunflower*</td>
<td>Alternaria leaf spot (Alternaria spp.)</td>
<td>10 to 30 fl oz/A</td>
<td>Begin applications prior to disease development and continue on a 7- to 14-day interval. Use higher rate and shorter interval when disease pressure is high.</td>
</tr>
<tr>
<td></td>
<td>Powdery mildew (Erysiphe cichoracearum)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rust (Puccinia helianthi, Uromyces spp.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Septoria leaf spot (Septoria spp.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sclerotinia stem rot (Sclerotinia spp.)</td>
<td>16 to 30 fl oz/A</td>
<td></td>
</tr>
</tbody>
</table>

Make no more than two sequential applications of Vertisan® before switching to a fungicide with a different mode of action. Minimum time (PHI) between application and harvest is 14 days. Do not exceed 61 fl oz/A per year.

Sclerotinia rot in sunflower

* Not for use in California or New York.
** Includes wheat, oats, rye and sorghum.
DuPont™ Vertisan® fungicide field results for sunflower Sclerotinia rot

Reduction in sunflower Sclerotinia head rot by DuPont™ Vertisan® fungicide applied at early and/or late flowering — Manitoba, Canada, 2009

Early flowering (vs. late flowering) was the best application timing for reducing head rot severity. A similar trend was seen for dockage reduction in cleaned seed.

* % dockage measures the % infestation of fungal sclerotia in the sunflower seed after cleaning.

Applications made Aug. 4 (early flowering) and/or Aug. 17, (late flowering), 2009, to HYSUN 6511 sunflower in Morden, Manitoba, Canada, courtesy Khalid Rashid (CAR-09-731).

Columns that are the same color and have the same letter are not statistically different according to Fisher’s LSD. p value for % severity = 0.04; p value for % dockage = 0.18.

Yield effects in sunflower from Vertisan® fungicide application at early and/or late flowering — Manitoba, Canada, 2009

Early flowering was the best application timing for increasing yield. Early flowering followed by late flowering was numerically better than early flowering alone but not statistically better.

* Harvested Sept. 21, 2009.

Applications made Aug. 4 (early flowering) and/or Aug. 17, (late flowering), 2009, to HYSUN 6511 sunflower in Morden, Manitoba, Canada, courtesy Khalid Rashid (CAR-09-731).

Columns that are the same color and have the same letter are not statistically different according to Fisher’s LSD. p value for yield = 0.01.

Yield effects in sunflower from Vertisan® fungicide application at early and/or late flowering — Manitoba, Canada, 2009

A trend for higher oil content in all the fungicide treatments was seen, with early flowering followed by late flowering giving the highest numerical oil content.

* Harvested Sept. 21, 2009.

Applications made Aug. 4 (early flowering) and/or Aug. 17, (late flowering), 2009, to HYSUN 6511 sunflower in Morden, Manitoba, Canada, courtesy Khalid Rashid (CAR-09-731).

Columns that are the same color and have the same letter are not statistically different according to Fisher’s LSD. p value for % oil content = 0.26.

Reduction in sunflower Sclerotinia head rot by Vertisan® fungicide applied at full and/or late flowering — Manitoba, Canada, 2010

All fungicide treatments reduced % head rot and seed dockage over the untreated. Vertisan®, applied once at full or late flowering, or sequentially, gave Sclerotinia head rot control similar to Lance applied 3x.

* % dockage measures the % infestation of fungal sclerotia in the sunflower seed after cleaning.

Applications made Aug. 10 (full flowering), Aug. 23 (late flowering) and Sept. 7 (14 days later), 2010, to HYSUN 6511 sunflower in Morden, Manitoba, courtesy Khalid Rashid (CAR-10-730).

Columns that are the same color and have the same letter are not statistically different according to Fisher’s LSD. p value for % severity = 0.12; p value for % dockage = 0.02.
Reduction in sunflower *Sclerotinia* head rot by Vertisan® fungicide applied at early and/or late flowering — Manitoba, Canada, 2014

For the Aug. 27 evaluation, all three application timings for Vertisan® reduced head rot significantly over the untreated and better than the standard fungicide programs. On Sept. 9, the two-application timing for Vertisan® (and standard) was best.*†

*,† Treatments with green asterisk are statistically similar, but significantly different from treatments with green dagger; for light gray columns, treatments marked with an asterisk or dagger are statistically better than unmarked treatments.

Applications made Aug. 8 (early flowering) and/or Aug. 27 (late flowering), 2014, to sunflower in Manitoba, Canada, courtesy Khalid Rashid (CAR-14-731).

Columns that are the same color and have the same letter are not statistically different according to Fisher’s LSD. p value for % severity = 0.01 for both evaluation dates.

Yield effects in sunflower from Vertisan® fungicide application at early and/or late flowering — Manitoba, Canada, 2014

Treatment yields did not split out clearly, but a good trend was seen for higher yields from two applications vs. one application in 2014.

Applications made Aug. 8 (early flowering) and/or Aug. 27 (late flowering), 2014, to sunflower in Manitoba, Canada, courtesy Khalid Rashid (CAR-14-731).

Columns that are the same color and have the same letter are not statistically different according to Fisher’s LSD. p value for % yield = 0.02.

Yield effects in sunflower from Vertisan® fungicide application at early and/or late flowering — Manitoba, Canada, 2014

A trend* toward higher oil content was seen in all Vertisan® treatment (avg. 48.4%) vs. Untreated inoculated (46.5%).

*,† A numerical trend toward higher oil content was seen. p value for % oil content = 0.26.

Applications made Aug. 8 (early flowering) and/or Aug. 27 (late flowering), 2014, to sunflower (harvest Sept. 30) in Manitoba, Canada, courtesy Khalid Rashid (CAR-14-731).
DuPont™ Vertisan® fungicide field results for sunflower rust

Reduction in sunflower rust on foliage by Vertisan® fungicide applied at early flowering or early and late flowering — Manitoba, Canada, 2013

All fungicide treatments reduced rust over the untreated. Vertisan® gave rust control equal to Lance, with two applications of Vertisan® numerically the best treatment.

- Applications made Aug. 21 (early flowering) and Sept. 4 (late flowering), 2013, to variety 9530CL sunflower in Minto, Manitoba, Canada, courtesy Diane Logeot (CAR-13-710).
- Columns that are the same color and have the same letter are not statistically different according to Fisher’s LSD. p values for % severity = 0.01, 0.01.

For more information
Contact your local DuPont retailer or representative to learn more about Vertisan® fungicide. And visit us at vertisan.dupont.com.

Reduction in sunflower rust on foliage by Vertisan® fungicide applied at initial infection — Manitoba, Canada, 2014

Both one and two applications of Vertisan® significantly reduced rust in both plant canopies over the untreated, with two applications giving the greatest rust reduction in the upper canopy.

- Applications made Aug. 8 and Aug. 20 (initial infection in lower canopy), 2014, to variety Clearfield 400 sunflower in Portage La Prairie, Manitoba, Canada (CAR-14-762).
- Columns that are the same color and have the same letter are not statistically different according to Fisher’s LSD. p values for % severity = 0.01, 0.01.