Product Description
DuPont 5018 is a UV curable, solvent less, screen printable composition used in encapsulant and crossover applications for both rigid and flexible circuit manufacture. It offers the advantages of rapid cure and excellent processing latitude while maintaining excellent electrical and physical properties after cure, including excellent crosshatch adhesion to print-treated and good adhesion to non-print-treated PET substrate and conductor. It is fully compatible with DuPont’s 5000’s Series conductor compositions.

Product Benefits
- Fast UV cure
- Zero VOC when properly cured

Processing
- Screen Printing Equipment
 - Semiautomatic and manual
- Substrates
 - Polyester, polyimide, epoxy glass
- Ink Residence Time on Screen
 - > 2 hours
- Screen Types
 - Polyester, stainless steel
- Optimum Cure Conditions for Flexibility
 - 40 ft/min in air
 - 500 - 1500 mJ/cm*
- Typical Thickness (after cure per print)
 - Printed with 200 - 280 mesh stainless steel screen
 - 1 - 1.2 mil

Two prints of dielectric are strongly recommended to achieve maximum circuit reliability.

Table 1
Typical Physical Properties and Electrical Properties on Polyester Film

<table>
<thead>
<tr>
<th>Test</th>
<th>Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adhesion Crosshatch (ASTM D3359-78) Dielectric to Polyester Scotch</td>
<td>No Transfer (5B)</td>
</tr>
<tr>
<td>Tape #600</td>
<td></td>
</tr>
<tr>
<td>Conductor to Dielectric</td>
<td>No transfer</td>
</tr>
<tr>
<td>Abrasion Resistance, Pencil</td>
<td>≥ 1</td>
</tr>
<tr>
<td>Hardness (ASTM D3363-74) [H]</td>
<td></td>
</tr>
<tr>
<td>Operating Use Temperature (°C)</td>
<td>At least 70</td>
</tr>
<tr>
<td>Flexibility (180° crease over DuPont 5007)</td>
<td>No opens</td>
</tr>
<tr>
<td>Breakdown Voltage (ASTM D150)[V/mil DC]</td>
<td>≥ 500</td>
</tr>
<tr>
<td>Dielectric Constant (ASTM D150)[@ 1KHz]</td>
<td>4.4</td>
</tr>
<tr>
<td>Insulation Resistance [GΩ/sq/mil]</td>
<td>> 10</td>
</tr>
<tr>
<td>Change in Physical Properties after Environmental Tests*</td>
<td>Insignificant</td>
</tr>
<tr>
<td>Change in Electrical Properties after Environmental Tests*</td>
<td>May drop up to one order of magnitude</td>
</tr>
</tbody>
</table>

*Environmental Tests
 - Thermal Shock (+85°C to -40°C, 30 min. each, 5 cycles)
 - Dry Heat (+48°C, 10 days)
 - Humidity (+40°C, 95% RH, 10 days) [MIL Std 202E, method 103, cond. AJ]
 - Salt Spray (+35°C, 5% salt, 10 days) [ASTM B117]

Table 1 & 2 show anticipated typical physical properties for DuPont 5018 based on specific controlled experiments in our labs and are not intended to represent the product specifications, details of which are available upon request.

*0.500 - 1.500, joules using International Light IL 390B Light Bug or UV Process Supply Con-Trol-Cure® Compact Radiometer, or 0.100 - 0.300, joules, using Electronic Instrumentation & Technology Inc. UR 365 CHI Radiometer
Storage and Shelf Life
Containers should be stored, tightly sealed, in a clean, stable environment at room temperature (<25°C). Shelf life of material in unopened containers is six months from date of shipment. Some settling of solids may occur and compositions should be thoroughly mixed prior to use.

Safety and Handling
For Safety and Handling information pertaining to this product, read the Material Safety Data Sheet (MSDS).

Table 2
Composition Properties

<table>
<thead>
<tr>
<th>Test</th>
<th>Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viscosity (Pa.s)</td>
<td>15 - 30</td>
</tr>
<tr>
<td>[Brookfield 0.5RVT, 10 rpm, #14 spindle, 25°C]</td>
<td></td>
</tr>
<tr>
<td>Solids (150°C)[%]</td>
<td>100</td>
</tr>
<tr>
<td>Coverage (cm²/g)</td>
<td></td>
</tr>
<tr>
<td>(Dependent on print thickness):</td>
<td></td>
</tr>
<tr>
<td>0.45 mil coating given by 280-mesh polyester</td>
<td>500</td>
</tr>
<tr>
<td>0.6 mil coating given by 230-mesh polyester</td>
<td>375</td>
</tr>
<tr>
<td>1.0 mil coating given by 280-mesh stainless steel</td>
<td>290</td>
</tr>
<tr>
<td>1.1 mil coating given by 200-mesh stainless steel</td>
<td>240</td>
</tr>
<tr>
<td>Thinner</td>
<td>Not recommended</td>
</tr>
<tr>
<td>Density, g/cm³</td>
<td>1.28</td>
</tr>
<tr>
<td>Color</td>
<td>Blue</td>
</tr>
<tr>
<td>Odor</td>
<td>Slight, pleasant</td>
</tr>
</tbody>
</table>

For more information on DuPont 5018 or other DuPont Microcircuit Materials products, please contact your local representative:

Americas
DuPont Microcircuit Materials
14 T.W. Alexander Drive
Research Triangle Park, NC 27709
Tel.: 800-284-3382

Europe
Du Pont (U.K.) Limited
Coldharbour Lane
Bristol BS16 1QD
U.K.
Tel.: 44-117-931-3191

Asia
DuPont Kabushiki Kaisha
Sanno Park Tower, 11-1 Nagata-cho 2-chome
Chiyoda-ku, Tokyo 100-611
Japan
Tel.: 81-3-5521-8650

DuPont Taiwan Ltd
45, Hsing-Pont Road,
Taoyuan, Taiwan 330
Tel.: 886-3-377-3616

DuPont China Holding Co. Ltd
Bldg 11, 399 Keyuan Rd., Zhangji Hi-Tech Park,
Pudong New District, Shanghai 201203, China
Tel.: 86-21-6386-6366 ext.2202

DuPont Korea Inc.
3~5th Floor, Asia tower #726,
Yeoksam-dong, Gangnam-gu
Seoul 135-719, Korea
Tel.: 82-10-6385-5399

E. I. DuPont India Private Limited
7th Floor, Tower C, DLF Cyber Greens,
Sector-25A, DLF City, Phase-III,
Gurgaon 122 002 Haryana, India
Tel.: 91-124-4091818

Du Pont Company (Singapore) Pte Ltd
1 HarbourFront Place, #11-01
HarbourFront Tower One,
Singapore 098633
Tel.: 65-6586-3022

http://mcm.dupont.com
Caution: Do not use in medical applications involving implantation in the human body or contact with internal body fluids or tissue unless the product is provided by DuPont under a formal written contract consistent with the DuPont Policy Regarding Medical Applications of DuPont Materials H-50103-2 ("Medical Applications Policy") and which expressly acknowledges the contemplated use. For additional information, please request a copy of DuPont Medical Caution Statement H-50102-2 and the DuPont Medical Applications Policy.

The information provided herein is offered for the product user’s consideration and examination. While the information is based on data believed to be reliable, DuPont makes no warranties, expressed or implied as to the data’s accuracy or reliability and assumes no liability arising out of its use. The data shown are the result of DuPont laboratory experiments and are intended to illustrate potential product performance within a given experimental design under specific, controlled laboratory conditions. While the data provided herein falls within anticipated normal range of product properties based on such experiments, it should not be used to establish specification limits or used alone as the basis of design. It is the product user’s responsibility to satisfy itself that the product is suitable for the user’s intended use. Because DuPont neither controls nor can anticipate the many different end-uses and end-use and processing conditions under which this information and/or the product described herein may be used, DuPont does not guarantee the usefulness of the information or the suitability of its products in any given application. Users should conduct their own tests to determine the appropriateness of the products for their particular purpose.

The product user must decide what measures are necessary to safely use the product, either alone or in combination with other products, also taking into consideration the conditions of its facilities, processes, operations, and its environmental, health and safety compliance obligations under any applicable laws.

This information may be subject to revision as new knowledge and experience become available. This publication is not to be taken as a license to operate under, or recommendation to infringe any patent.