Product Description
DuPont CB102 silver conductive via plug paste is used to provide high conductivity plateable vias for Plastic ball grid array (PBGA), buried via and sequential build-up board (SBU). DuPont CB102 offers greater flexibility and processing latitude for filling small diameter holes and can be applied to thin PWB’s. The improved processing capabilities allow DuPont CB102 to fill vias without the need of vacuum assistance.

Product Benefits
- High thermal conductivity allows use of drilled, filled vias as heat sinks improving thermal management
- Strong adhesion to copper and most laminate materials provides increased reliability
- Solvent-less composition provides broader curing window and reduced curing time.
- Simple application of material using screen printing techniques (160-280 mesh screen) reduces processing steps with minimal capital investment.
- Close CTE to board material (FR-4, BT resin) increases reliability
- High electrical conductivity of filled, buried vias allows reduced layer count and processing steps.
- No shrinkage, one part epoxy system provides reliability, planarization and ease of use.
- Solderability after plating provides increased use of board real estate by allowing via in pad technology

Processing
Screen Printing Equipment
Semi-automatic or manual printer. No vacuum assist required. Mesh screen or stencil can be used

Table 1
Typical Physical Properties

<table>
<thead>
<tr>
<th>Test</th>
<th>Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulk Resistivity (Ω/cm³)</td>
<td>1.8 X 10^-4</td>
</tr>
<tr>
<td>Abrasion Resistance, Pencil Hardness (H)</td>
<td>3 - 4</td>
</tr>
<tr>
<td>(ASTM D3363-74)</td>
<td></td>
</tr>
<tr>
<td>Specific Gravity (gt/cm³)</td>
<td>4.8</td>
</tr>
<tr>
<td>Viscosity (Pa.s)</td>
<td>85</td>
</tr>
<tr>
<td>(Brookfield HBT, 10 rpm, 25°C)</td>
<td></td>
</tr>
<tr>
<td>Thermal conductivity (W/mK)</td>
<td>3.27</td>
</tr>
<tr>
<td>Thinner</td>
<td>None</td>
</tr>
<tr>
<td>Platability (Cu plating)</td>
<td>Good in Electrolytic Ni/Au</td>
</tr>
<tr>
<td>(Ni/Au electrolytic plating possible)</td>
<td></td>
</tr>
</tbody>
</table>

This table shows anticipated typical physical properties for DuPont CB102 based on specific controlled experiments in our labs and are not intended to represent the product specifications, details of which are available upon request.

Substrates
Epoxy glass, BT resin

Ink Residence Time on Screen
>1 hr

Screen or Stencil Types
160-280 stainless steel or polyester mesh screen or 3 - 4 mil stainless steel stencil recommended

Typical Cure Conditions
150 deg C for 60 minutes

Clean up Solvent
Axarel®, Isopropanol, Ethylene diacetate
Process Recommendations

- Copper Clad Board
- Drill Through-holes
- Plate Through-holes
- Fill Via Plug Material (Cure 150°C for 60 min.)
- Scrubbing for Planarization (Sander or Buff Roller)
- Electrolytic Plating (Cu, ni, 5-10 microns)
- Print & Etch Process

Environmental Properties

<table>
<thead>
<tr>
<th>Glass Transition Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMA 1 Hz</td>
</tr>
<tr>
<td>DMA 10 Hz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Thermal Expansion</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMA a1</td>
</tr>
<tr>
<td>TMA a2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Solder Resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>260°C/ 20 sec, 2X</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chemical Resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>10% H₂SO₄</td>
</tr>
<tr>
<td>10% NaOH</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Water Absorption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boiling water, 1hr</td>
</tr>
<tr>
<td>DI water, 23°C, 24 hrs</td>
</tr>
<tr>
<td>PCT 121C, 100% RH 24 hrs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Out Gassing: Test Method ASTM E595</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample I.D.</td>
</tr>
<tr>
<td>-------------</td>
</tr>
<tr>
<td>CB102</td>
</tr>
</tbody>
</table>

TML is well below the normal acceptance of 1.0%
CVCM is below the normal acceptance level of 0.10%
Storage and Shelf Life
Containers should be stored, tightly sealed, in a clean, refrigerated environment (0-5°C). Shelf life of material in unopened containers is three months from date of shipment. Some settling of solids may occur and compositions should be thoroughly mixed prior to use.

Safety and Handling
For Safety and Handling information pertaining to this product, read the Material Safety Data Sheet (MSDS).

For more information on DuPont CB102 or other DuPont Microcircuit Materials products, please contact your local representative:

Americas
DuPont Microcircuit Materials
14 T.W. Alexander Drive
Research Triangle Park, NC 27709
Tel.: 800-284-3382

Europe
Du Pont (U.K.) Limited
Coldharbour Lane
Bristol BS16 1QD
U.K.
Tel.: 44-117-931-3191

Asia
DuPont Kabushiki Kaisha
MCM Technical Lab
DuPont Electronics Center
KSP R&D B213
21-3, Sakado 3-chom, Takatsuku,
Kawasaki-shi, Kanagawa, 213-0012
Japan
Tel +81 44 820 7575

DuPont Taiwan Ltd
45, Hsing-Pont Road,
Taoyuan, Taiwan 330
Tel.: 886-3-377-3616

DuPont China Holding Co. Ltd
Bldg 11, 399 Keyuan Rd., Zhangji Hi-Tech Park,
Pudong New District, Shanghai 201203, China
Tel.: 86-21-6386-6366 ext.2202

DuPont Korea Inc.
3~5th Floor, Asia tower #726,
Yeoksam-dong, Gangnam-gu
Seoul 135-719, Korea
Tel.: 82-10-6385-5399

E. I. DuPont India Private Limited
7th Floor, Tower C, DLF Cyber Greens,
Sector-25A, DLF City, Phase-III,
Gurgaon 122 002 Haryana, India
Tel.: 91-124-4091818

Du Pont Company (Singapore) Pte Ltd
1 HarbourFront Place, #11-01
HarbourFront Tower One,
Singapore 098633
Tel.: 65-6586-3022

http://mcm.dupont.com