THPE

1,1,1-tris-(p-hydroxyphenyl)ethane
CAS Name: Phenol, 4,4’,4”-(ethylidene)tris
CAS Number: 27955-94-8

EP’s THPE is a high purity, commercially available tri-functional phenolic. Used as a cross linking or branching agent in various polymer applications, THPE can enhance key properties including adhesion, hardness, heat resistance and solvent resistance. THPE applications include use in polycarbonates, epoxies, adhesives, coatings, and antioxidants. Branched polycarbonates derived from THPE are high molecular weight thermoplastic materials that can be fabricated into films or sheets or blow molded to prepare structured containers.

THPE can also be derivatized through esterification and etherification. Epoxy resins (tris-glycidyl ether) prepared from THPE are suitable for applications such as castings, laminates, composites and coatings requiring high mechanical strength and chemical resistance. Epoxy coatings and polymers cured with THPE exhibit excellent heat distortion temperatures, and chemical and solvent resistance. THPE modified formulations enhance the properties of high temperature adhesive and aerospace composites and laminates, and harsh environment applications.

THPE can also be made as a low metals (ppb) Electronic Grade material (THPE-EG) suitable for use in photoactive compound (PAC) and PWB applications.

THPE Physical Properties:
- Melting Point: 245-246 °C
- Molecular Formula: C_{20}H_{18}O_{3}
- Molecular Weight: 306
- Odor: None
- Physical Appearance: White Powder
- Vapor Pressure: <0.1 mm Hg (20 °C)

Specifications:
- 4-HAP, wt% max 0.01
- Color APHA max 200
- Iron, ppm max 5
- Melting Point, °C 245-248
- Phenol, wt % max 0.02
- Purity, wt% min 99.5
- Water, wt% max 0.20

<table>
<thead>
<tr>
<th>Solubility of THPE in Water/Methanol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temp. °C</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>60</td>
</tr>
<tr>
<td>90</td>
</tr>
</tbody>
</table>

For additional information on deliveries, order placement and pricing, write or call us at our offices in Raleigh, NC at 919 248-5135, or by FAX at 919 248-5571

This information corresponds to DuPont’s current knowledge on the subject. It is offered solely to provide possible suggestions for your own experiments and is not intended to substitute for any testing you may need to conduct to determine the suitability of DuPont’s products for your particular purposes. This information may be subject to revision as new knowledge and experience becomes available. Since DuPont cannot anticipate all variations in actual end-use conditions, it makes no warranties and assumes no liability in connection with any use of this information. Nothing in this publication is to be considered as a license to operate under or a recommendation to infringe any patent right.

www.electronicpolymers.dupont.com