Bynel® resins Product Data Sheet

Description

Product Description
BYNEL® Series 4100 resins are anhydride-modified, linear low-density polyethylene (LLDPE) resins. All 4100 series resins are available in pellet form for use in conventional extrusion and coextrusion equipment designed to process polyethylene (PE) resin.

BYNEL 4140 is a grade with a higher level of anhydride modification, and is mainly intended for use as a component in a blend with other polyolefin resins. It is not intended for extrusion in its pure form in typical extrusions or coextrusions.

Restrictions

Material Status
Commercial: Active

Typical Characteristics

Characteristics / Benefits
Physical properties of BYNEL Series 4100 resins are typical of linear low-density polyethylene resins with similar density and melt index values. Use of these adhesive resins in coextruded PE/barrier structures offers improved thermal resistance over that of ethylene vinyl acetate-based adhesive resins.

Applications
BYNEL 4100 series resins adhere to a variety of materials. They are most often used to adhere to EVOH, polyamide, PE and ethylene copolymers.

Series 4100 resins can be used in coextrusion processes including:
- blown film
- cast film/sheet
- blow molding
- melt and solid phase thermoforming
- sheet and tubing

LLDPE resins are known for their temperature resistance, clarity and toughness. These physical properties make the 4100 series resins work well in applications such as:
- boil-in-bag structures
- blow molded containers in which drop strength is important
- bag-in-box films
- film where LLDPE is the heat seal layer.

Typical Properties

<table>
<thead>
<tr>
<th>Physical</th>
<th>Nominal Values</th>
<th>Test Method(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>*Density ()</td>
<td>0.92 g/cm³</td>
<td>ASTM D792</td>
</tr>
<tr>
<td>*Melt Flow Rate (190°C/2.16kg)</td>
<td>1.75 g/10 min</td>
<td>ASTM D1238</td>
</tr>
<tr>
<td>Thermal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*Melting Point (DSC)</td>
<td>121 °C (249.8 °F)</td>
<td>ASTM D3418</td>
</tr>
<tr>
<td>Freezing Point (DSC)</td>
<td>100 °C (212 °F)</td>
<td>ASTM D3418</td>
</tr>
<tr>
<td>Vicat Softening Point ()</td>
<td>102 °C (215.6 °F)</td>
<td>ASTM D1525</td>
</tr>
</tbody>
</table>

*Adhesive Evaluation
The performance of any adhesive resin should be evaluated within the context of the application. The adhesive is designed to bond materials that would not ordinarily adhere to each other. In most cases, peel strength is used as a measure of performance. Although this is a convenient test, peel strength is affected not only by adhesion, but also by peel angle, separation rate, temperature, and tensile and modulus properties of the materials, and often by the time elapsed since the formation of the bond. Post-treatment of the multi-layer structure, such as heat sealing, thermoforming or orientation can also affect peel strength.
For information on appropriate Handling & Storage of this polymeric resin, please refer to the Material Safety Data Sheet.

For information on regulatory compliance outside the U.S., consult your local DuPont representative.

The temperature profiles shown below are for initial evaluations of BYNEL 4140 adhesive resin when blended with PE. These profiles are designed to provide adequate exposure time of the adhesive resin to elevated temperatures. Exposure to elevated temperatures activates the anhydride which improves the bonding capability of the adhesive resin. Regardless of the profile used, the adhesive resin should be exposed to temperatures above 210°C (410°F) for several minutes prior to contact with the other molten resins in coextrusion in order to ensure adequate performance of the adhesive resin.

In coextrusions with thermally sensitive resins such as EVOH or EVA, we suggest that the maximum melt temperature be limited to 235°C (455°F) to guard against overheating the EVOH or EVA. If adhesion results are adequate, we suggest evaluating even lower melt temperatures such as 210 - 220°C (410 - 428°F).

For coextrusion with polyamides or other thermally stable resins, the melt temperature can be higher. We suggest a maximum melt temperature of 260°C (500°F). This should provide acceptable bond strengths and film quality under almost all coextrusion conditions. If adhesion results are adequate, melt temperatures can be lowered. While it is possible to extrude BYNEL 4100 series resins as high as 300°C (572°F), such high extrusion temperatures, particularly when coupled with long residence times, may result in some film imperfections. In certain streamlined extrusion operations, where residence times are short, it may be possible to use temperatures higher than 260°C (500°F).

Variation of these suggested temperature profiles may be appropriate depending upon the screw configuration, potential extruder horsepower limitations, potential back pressure limitations, the need to match rheologies and/or the stability of the other resins in the coextrusion. Film quality will also depend upon the residence time of the adhesive resin in the system. Dead spots may result in localized overheating and should be avoided by ensuring the flow path for the adhesive is as streamlined as possible.

We suggest using any standard polyolefin working screw when extruding BYNEL 4100 series resins. Excessively deep flights should be avoided as they might result in poor melting of the adhesive resin. It is also important to properly size the extruder for the output desired. Running large extruders at very low RPMs should be avoided.

For producing monolayer adhesive films with BYNEL 4100 adhesive resins, extrusion conditions commonly used for converting linear low density polyethylene into films can be employed.

If the coextrusion process is stopped for short periods of time, the screw in the adhesive extruder should be kept turning at a low RPM level. For a permanent shutdown, the BYNEL adhesion resin should be purged out using an available polyethylene resin run at the same extrusion temperature used during the extrusion process of the adhesive resin. Making frequent changes in screw speed during the shutdown process and subsequent start-up will help remove the previous material from the system more effectively. Sometimes upon start-up of the adhesive resin, excessive amounts of gel may be observed. This may be due to the natural ability of the adhesive resin to act as a purging compound. In this case, continued extrusion will eventually clear up the problem.

**FDA Status Information**

BYNEL® 4140 Adhesive Resin complies with Food and Drug Administration Regulation 21 CFR 175.105 - Adhesives. This Regulation describes adhesives that may be used as components of articles intended for use in packaging, transporting, or holding food, subject to the limitations and requirements therein.

The information and certifications provided herein are based on data we believe to be reliable, to the best of our knowledge. The information and certifications apply only to the specific material designated herein as sold by DuPont and do not apply to use in any process or in combination with any other material. They are provided at the request of and without charge to our customers. Accordingly, DuPont cannot guarantee or warrant such certifications or information and assumes no liability for their use.

**Regional Centres**

DuPont operates in more than 70 countries.
For help finding a local representative, please contact one of the following regional customer contact centers: