Description

Product Description

DuPont™ Surlyn® 8020 is an ionomer of ethylene acid acrylate terpolymer.

This polymeric material can be processed in conventional extrusion and injection equipment designed to process polyethylene and ethylene copolymer type resins, to create various shapes and sheeting.

Restrictions

<table>
<thead>
<tr>
<th>Material Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial: Active</td>
</tr>
</tbody>
</table>

Typical Characteristics

- **Composition**: Sodium Ionomer
- **Characteristics / Benefits**
 - Embrittlement Temperature: (-112°C)
 - 150 NBS Index: ASTM D1630
 - Flexural Modulus (23C): 100 MPa
 - ASTM D790
 - Tensile Elongation @ Break (23C): 530%
 - ASTM D638 / ISO 527-2
 - Tensile Strength @ Break (23C): 31 MPa
 - ASTM D638 / ISO 527-2
 - Tensile Impact Strength (23C): 630 ft-lb/in²
 - ASTM D1822
 - Tensile Impact Strength (-40): 415 ft-lbs/in²
 - ASTM D1822
 - Hardness (Shore D): 56
 - ASTM D2240 / ISO 868
 - Haze (0.25 inch): 19%
 - ASTM D1003

- **Applications**: Blow Molding / Sheet Extrusion

Typical Properties

<table>
<thead>
<tr>
<th>Physical</th>
<th>Nominal Values</th>
<th>Test Method(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density ()</td>
<td>0.95 g/cm³</td>
<td>ASTM D792</td>
</tr>
<tr>
<td>Melt Flow Rate (190°C/2.16kg)</td>
<td>1 g/10 min</td>
<td>ASTM D1238</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Thermal</th>
<th>Nominal Values</th>
<th>Test Method(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melting Point (DSC)</td>
<td>82°C (180°F)</td>
<td>ASTM D3418</td>
</tr>
<tr>
<td>Freezing Point (DSC)</td>
<td>67°C (153°F)</td>
<td>ASTM D3418</td>
</tr>
<tr>
<td>Vicat Softening Point ()</td>
<td>61°C (142°F)</td>
<td>ASTM D1525</td>
</tr>
</tbody>
</table>

Processing Information

General
Maximum Processing Temperature

Surlyn® 8020 is normally processed at melt temperatures ranging from 185° - 285°C (365° - 545°F). Actual processing temperatures will usually be determined by either the specific equipment or substrate or one of the other polymers in a coextrusion or coinjection.

Materials of construction used in the processing of this resin should be corrosion resistant. Stainless steels of the types 316, 15-5PH, and 17-4PH are excellent, as is quality chrome or nickel plating, and in particular duplex chrome plating. Type 410 stainless steel is satisfactory, but needs to be tempered at a minimum temperature of 600°C (1112°F) to avoid hydrogen-assisted stress corrosion cracking. Alloy steels such as 4140 are borderline in performance. Carbon steels are not satisfactory. While stainless steels can provide adequate corrosion protection, in some cases severe purging difficulties have been encountered. Nickel plating has been satisfactory, but experiments have shown that chrome surfaces have the least adhesion to acid based polymers. In recent years, the quality of chrome plating has been deteriorating due to environmental pressures, and the corrosion protection has not always been adequate. Chrome over top of stainless steel seems to provide the best combination for corrosion protection and ease of purging.

If surface properties of the extruded resin require modification (such as, lower C.o.F. for packaging machine processing), refer to the Conpol™ Processing Additive Resin product information guide.

After processing Surlyn, purge the material out using a polyethylene resin, preferably with a lower melt flow rate than the Surlyn resin in use. The "Disco Purge Method" is suggested as the preferred purging method, as this method usually results in a more effective purging process. Information on the Disco Purge Method can be obtained via your DuPont Sales Representative.

Never shut down the extrusion system with Surlyn in the extruder and die. Properly purge out the Surlyn with a polyethylene, and shut down the line with polyethylene or polypropylene in the system.

Read and Understand the Material Safety Data Sheet (MSDS) before using this product.
The data listed here fall within the normal range of properties, but they should not be used to establish specification limits nor used alone as the basis of design. The DuPont Company assumes no obligations or liability for any advice furnished or for any results obtained with respect to this information. All such advice is given and accepted at the buyer’s risk. The disclosure of information herein is not a licence to operate under, or a recommendation to infringe, any patent of DuPont or others. Since DuPont cannot anticipate all variations in actual end-use conditions, DuPont makes no warranties and assumes no liability in connection with any use of this information.

CAUTION: Do not use DuPont materials in medical applications involving implantations in the human body or contact with internal body fluids or tissues unless the material has been provided from DuPont under a written contract that is consistent with DuPont policy regarding medical applications and expressly acknowledges the contemplated use. For further information, please contact your DuPont representative. You may also request a copy of DuPont POLICY Regarding Medical Applications H-50103-3 and DuPont CAUTION Regarding Medical Applications H-50102-3.

Copyright © 2009 DuPont. The DuPont Oval Logo, DuPont™, The miracles of science™, and trademarks designated with “®” are registered trademarks or trademarks of E.I. du Pont de Nemours and Company or its affiliates. All rights reserved.

This data sheet is effective as of 08/08/2010 10:06:40 AM and supersedes all previous versions.