Protective glove standards change. The legendary protection of DuPont™ Kevlar® continues.

The revised EN 388 standard will improve transparency around cut performance so you can make a more informed decision about the right glove for your application.

EN 388, the European standard for protective gloves, is recognized globally. The most significant change is the formal inclusion of the ISO 13997 cut test method, with the intent in the future to replace the Coup test.

ISO 13997 Provides More Consistent, More Accurate Results
ISO 13997, also known as the TDM-100 test method, is designed to better simulate real-world situations such as an accidental cut or slash. Until this revision, EN 388 only required use of the Coup test to assess the cut resistance on all protective glove materials, with the ISO method being optional.

Although the Coup test has been maintained in the standard for now, if after a certain number of cycles the material has not been cut, it is a requirement to test the material using ISO 13997. Failure to cut using the Coup test occurs when testing high-performance materials due to dulling of the blade.

Under the revised standard, cut performance results will continue to be reported in Newtons and the levels achieved through the use of the TDM-100 test method will be lettered A through F to avoid confusion with Coup test method levels 1 through 5. It is important to note that there is no correlation between the Coup test method and the TDM-100 test method.

Other changes include a new impact protection threshold and a change to the abrasion test.

What This Means for You
Glove performance has improved significantly in recent years as new yarns and new technologies have been developed. As a result, there are more high cut protection gloves to choose from than ever before. The revised EN 388 standard will help you choose the right protection with greater precision and accuracy than before. The chart shown here provides a comparison of the old and new pictograms, with details about the new levels A through F.
Cut Resistance of Typical Gloves Using TDM-100
DuPont® Kevlar® fiber has the highest cut resistance

<table>
<thead>
<tr>
<th>Material</th>
<th>Load (grams)</th>
<th>ANSI/ISEA 105-11</th>
<th>New Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>100% Kevlar® (20 oz)</td>
<td>1,230</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100% HPPE (20 oz)</td>
<td>1,020</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100% Kevlar® (14 oz)</td>
<td>925</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cotton (26 oz)</td>
<td>410</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leather (36 oz)</td>
<td>360</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Portfolio of Proven Solutions
DuPont® Kevlar® patented technology makes the lightest weight, highest performing gloves possible. And our new Kevlar® engineered yarns provide greater levels of cut, heat and durability protection than ever before.

Global Recognition of Cut Standards

ANSI/ISEA 105 Standard

Items highlighted in yellow represent the expanded ANSI/ISEA cut standard.

To learn more about EN 388, as well as recent ANSI standard changes, go to kevlar.com.

SafeSPEC™ offers more information about specifying the right glove for your application.
SafeSPEC.DuPont.com

*As proposed in its final draft EN 388:2016.