High Tg Polyamide Overmolding Resins with Continuous Glass Fiber Reinforced Thermoplastic Sheet*: Composite Solutions Providing Improved Stiffness, Less Weight, and Less Design Space

Paul Kane P.E.
DuPont Performance Polymers
Advanced Development Leader, Automotive Thermoplastic Composites
Troy, MI
Paul.J.Kane@dupont.com

*Vizilon™ Thermoplastic Composites
Background: DuPont’s introduction of Vizilon™ Thermoplastic Composite offering

Structural materials
- PA66 to PPA
- Over-injection grades
- Continuous Glass Reinforced Sheet
- Formulated for a robust process window
- MSDS + Data sheets

Design & FEA approach
- Conceptual and quantitative design support
- Comprehensive material data
- License to validated FEA methodology
- Design Guide
- Assembly Guide

Processing support
- DuPont commercial scale moulding cell
 - Insert stamp-forming
 - Over-injection
- Customer process support – plant layout, operation
- Processing Guide

Facilitate supply chains
- OEMs/Tier 1s, processors, equipment
Vizilon™ TPC: Combining materials for processing flexibility

Structural inserts
- Textile sheet
- Random core
- PA-Random
- UD bar/tape

Preforming
- Stamping
 - shell structure
 - low pressure
- Co-compression
 - thickness variations
 - shear edge tool
 - net shape

Over-moulding
- Over-injection moulding, (2 step)
 - pre-compounded pellets
 - tuned for process
- Forming & Over-injection / Compression moulding, (1 step)
 - pre-compounded pellets
 - tuned for process

Red = sheet
Blue = over-inject
“Most automotive applications are initially dominated by Stiffness / NVH (Noise, Vibration, Harshness) requirements”

Chrysler Light Weighting Expert

Materials Trilemma® Example

- Bending Stiffness $\approx E \times I$
- Torsional Stiffness $\approx G \times J$
- Modal Analysis $\approx \sqrt{K/m_e}$

…. increase the modulus of the material, lower the density while minimizing the cost impact. Challenging!
One of the performance challenges for thermoplastic glass fiber laminate + overmolding resin composite is meeting stiffness requirements for automotive applications at elevated temperature.

Typically, 90°C testing for automotive components such as a cross car beam, lift-gates, seating, etc.

This overview will review properties of high glass transition temperature (Tg) PPA resins, and their use as an overmolding resin with stamped continuous glass fiber polyamide inserts.
What is a High Tg PPA?

• PPA’s are high performance polyamides are partially aromatic nylons. Tg (glass transition temperature) of PPA’s varies with the formulation.

• DuPont has Zytel® HTN PPA resins with Tg >100°C after moisture conditioning.

![Polyamide Diagram]

(high Tg resin’s)
Tg (glass transition temperature) effects stiffness of the polymer versus temperature
Machined Material Properties Measured

Shear testing

Testing, tension & compression

Shear samples 90°

tension/compression 0°

tension/compression 90°

shear 0°
Machined Material Properties Measured

At 90°C, 50% GR PPA is almost twice the bending stiffness of 50% GR PA66.

![Image of machined material properties](image)

<table>
<thead>
<tr>
<th>Name</th>
<th>2-2 63% GR TPC Sheet @ 1.5mm thickness</th>
<th>2-2 75% GR TPC Sheet @ 1.5mm thickness</th>
<th>50% GR PA66 Overmolding Resin</th>
<th>50% GR PPA Overmolding Resin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test</td>
<td>Tension</td>
<td>Tension</td>
<td>Tension</td>
<td>Tension</td>
</tr>
<tr>
<td>Temperature (Deg C)</td>
<td>90°C</td>
<td>90°C</td>
<td>90°C</td>
<td>90°C</td>
</tr>
<tr>
<td>Mat Direction</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Density (SG)</td>
<td>1.78</td>
<td>1.98</td>
<td>1.57</td>
<td>1.57</td>
</tr>
<tr>
<td>Modulus (GPa)</td>
<td>15.9</td>
<td>22.5</td>
<td>5.7</td>
<td>10.3</td>
</tr>
<tr>
<td>Comp. Tension Modulus (GPa)</td>
<td>20.9</td>
<td>24.8</td>
<td>5.9</td>
<td>10.6</td>
</tr>
<tr>
<td>Shear Modulus (GPa)</td>
<td>0.5</td>
<td>0.6</td>
<td>0.9</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Note: 50% GR PA66: DuPont Vizilon™ P50G1 50% GR PPA: DuPont Vizilon™ P50G4 2-2 63% GR TPC PA66 Sheet: DuPont Vizilon™ SB63G1-T1.5 2-2 75% GR TPC PA66 Sheet: DuPont Vizilon™ SB75G1-T1.5
50% GR Polyamide 66 and PPA Overmolding Resins

Tensile Modulus (GPa)
23°C vs 90°C

- **50% GR PA66 @23C**: 8.2 GPa
- **50% GR PA66 @90C**: 5.7 GPa
- **50% GR PPA @23C**: 12.1 GPa
- **50% GR PPA @90C**: 10.3 GPa

Moisture Conditioning
Accelerated conditioned (70°C, 62%RH) with a 21 day lab soak. Samples are accelerated conditioned and left to rest in a lab with conditions set to 50%RH/23°C for 21 days before testing.
PA66 Continuous Glass Fiber Sheet (63% and 75% by weight)

*Moisture Conditioning
Accelerated conditioned (70°C, 62%RH) with a 21 day lab soak. Samples are accelerated conditioned and left to rest in a lab with conditions set to 50%RH/23°C for 21 days before testing.

Continuous glass reinforced sheet is more consistent in stiffness versus temperature
PPA’s have very low moisture growth (< .001 mm/mm) that make these resins suitable for large structural applications such as an inner panel for a lift-gate.
Cross-member analysis example

Gray - Base material
(75% GR TPC sheet)

Red – Over molding
(50% GR PA66 or 50% GR PPA)

TPC sheet thickness = 1.5mm
Overmolding resin thickness of 1.5 mm
Boundary Conditions

1st and 2nd Natural Frequencies

Moment Applied

Fixed

Vertical Force

Free – Free conditions

All Tests done at 90°C

All Tests done at 90°C

Torsional Stiffness

Bending Stiffness

Fixed

Fixed

DuPont
Results (Bending and Torsional Stiffness)

Use of a high Tg 50% GR PPA overmolding resin improves bending stiffness by 16% and torsional stiffness by 49% as compared to a 50% GR PA66.
Overmolded Beam Testing

- Two combinations of materials were evaluated by using the 3 Point-Bending Test:

 - 2-2, 63% GR TPC PA66 sheet over-moulded with 50% GR PA66*
 (PA sheet over-moulded with PA66 resin)
 - 2-2, 63% GR TPC PA66 sheet over-moulded with 50% GR PPA*
 (PA sheet over-moulded with PPA resin)

- 2-2, 63% GR TPC PA66 is a heat stabilized, 2-2 Twill Weave Glass Fabric reinforced polyamide based thermoplastic composite sheet.

These tests were performed to see if a difference in terms of performance could be observed between 50% GR PA66 and 50% GR PPA over-molding resins.
DuPont Testing on Vizilon™ over-molded TPC “beam” part

- Test: 3-Point-Bending
- Part: “DuPont” beam (stamped and over-moulded)

- Beam state: conditioned for 2-3 weeks (70°C/62%RH) + 1 week (23°C/50%RH)
- Boundary conditions: Free-Free Mode (unconstrained) to emphasize OM resin effect
- Test temperature: 23°C / 90°C Test speed: 0.2 inch/min | 3 repeats

* dimensions in mm
50% GRPA66 and 50% GR PPA as overmolding resin

Average curves - Free-Free boundary condition
Test temperatures: 23°C - 90°C

2-2 63% GR TPC PA66 Sheet overmolded with 50% GR PPA @ 23°C

2-2 63% GR TPC PA66 Sheet overmolded with 50% GR PA66 @ 23°C

2-2 63% GR TPC PA66 Sheet overmolded with 50% GR PPA @ 90°C

50% GR PA66: DuPont Vizilon™ P50G1
50% GR PPA: DuPont Vizilon™ P50G4
2-2 63% GR TPC PA66 Sheet: DuPont Vizilon™ SB63G1-T1.5
2-2 75% GR TPC PA66 Sheet: DuPont Vizilon™ SB75G1-T1.5
50% GR PA66 and 50% GR PPA as overmolding resin

Average curves - Free-Free boundary condition
Test temperatures: 90°C

= 28% stiffness improvement
Observation/Summary

- Beams over-moulded with high Tg PPA are stiffer than PA66 over-moulded beams @ 23°C

- At 90°C, behaviour of high Tg PPA over-moulded beams is almost equivalent to those over-moulded with PA66 at 23°C

- At 90°C, 28% stiffness improvement with high Tg PPA overmolding

- At 90°C, PPA over-moulded beams absorbed around 30% more energy than PA6.6 over-moulded beams.

- Higher stiffness solution will allow use of less design space or a design with less weight
The information set forth herein is furnished free of charge and is based on technical data that DuPont believes to be reliable. This data was compiled for this test report and may not be transferable to other products or applications, at the judgment of intended recipients. It is intended for use by persons having technical skill, at their own discretion and risk. This data should not be used to establish specification limits nor used alone as the basis of design. Handling precaution information is given with the understanding that those using it will satisfy themselves that their particular conditions of use present no health or safety hazards. Since conditions of product use and disposal are outside our control, we make no warranties, express or implied, and assume no liability in connection with any use of this information. As with any product, evaluation under end-use conditions prior to specification is essential. Nothing herein is to be taken as a license to operate or a recommendation to infringe on patents.

Caution: Do not use in medical applications involving permanent implantation in the human body. For other medical applications, discuss with your DuPont customer service representative and read Medical Caution Statement H-50103-4.