PRODUCT DESCRIPTION
DuPont™ Solamet® PV3N2 photovoltaic metallization is a high-efficiency paste for N-Type wafers. It is designed for contacting B-doped p-type emitter. It is capable of firing through dielectric passivation/ARC layer (e.g., SiN, SiN/SiO2, SiN/Al2O3, etc.) and contacting p-type boron-doped emitter giving low contact resistivity (<10mΩ×cm²). PV3N2 is also co-firable with silver conductors such as DuPont™ Solamet® PV17x, PV18x.

PRODUCT BENEFITS
- Fine-line printability (for gridlines with screen printing)
- Fire-through passivation layer
- Better contact on B-doped emitter layer, enabling a broader diffusion process window
- Low gridline resistivity (high conductivity)
- Flexibility in metallization process selection. Proven technology on double-print design
- Co-firable with rear side contacts
- Good solderability and adhesion
- Cadmium free*

*Cadmium ‘free’ as used herein means that cadmium is not an intentional ingredient in and is not intentionally added to the referenced product. Trace amounts however may be present.

PROCESSING SUMMARY
Application
Screen printing

Printing
Speed at or above 150 mm/sec

Screen Type
325 Mesh stainless steel preferred for >70μm open; 290, 360 or 400 mesh stainless steel preferred for <70μm

<table>
<thead>
<tr>
<th>Test</th>
<th>Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viscosity (Pa.S)</td>
<td></td>
</tr>
<tr>
<td>(Brookfield HBT, SC4-14/6R utility cup, 25°C)</td>
<td>220-330</td>
</tr>
<tr>
<td>Solids (%) at 750°C</td>
<td>89.7 – 90.7</td>
</tr>
<tr>
<td>Resistivity (mΩ*cm)</td>
<td><5.5</td>
</tr>
<tr>
<td>Thinner</td>
<td>9450</td>
</tr>
</tbody>
</table>

PASTE PREPARATION
The composition should be thoroughly mixed before use. This is best achieved by slow, gentle hand-stirring with a clean burr-free spatula (flexible plastic) for 1–2 minutes. Jar rolling is NOT recommended, as this could change the rheology of the material. Care should be taken to avoid air entrapment.
PRINTING

Printing should be carried out in a clean, well-ventilated area. DuPont™ Solamet® PV3N2 photovoltaic composition, in its container, should be at ambient temperature prior to commencement of printing.

FIRING

Solamet® PV3N2 is designed for rapid (spike) firing. Thermal budget above 600°C should be kept to a minimum, ideally <8 seconds to ensure optimum electrical contact to the wafer. To get the best electrical performance, PV3N2 should be fired at a peak temperature of 700-750°C.

See Chart 1 for typical firing profile.

Actual furnace settings and belt speed will depend on the wafer thickness, texturing and emitter resistivity as these influence the temperature of the wafer during firing.

It is important that wafers are fired in a well-ventilated furnace, with a continuous supply of clean, filtered air. Airflow and extraction rates should be optimized to ensure that oxidizing conditions exist within the furnace firing chamber, especially when front and back-side conductors are co-fired.

THINNER

Solamet® PV3N2 composition is optimized for screen printing and thinning is not normally required. Use the DuPont recommended thinner for slight adjustments to viscosity or to replace evaporation losses. The use of too much thinner or the use of a non-recommended thinner may affect the rheological behavior of the material and its printing characteristics. Please refer to Table 1.

STORAGE

Containers may be stored in a clean, stable environment at room temperature (between 5°C–25°C) with their lids tightly sealed. Storage in high temperature (>30°C) or in freezers (temperature <0°C) is NOT recommended as this could cause irreversible changes in the material. Shelf life of material in unopened containers is six months from date of shipment. Some settling of solids may occur and compositions should be thoroughly mixed prior to use.

SAFETY AND HANDLING

For information on health and safety regulations please refer to the specific product MSDS.