Plastic Design Solutions

Plastic Design Solutions Make Parts and Systems Better

Plastic design solutions help make better products possible. From cost-efficient conveyor systems to fuel-efficient cars, DuPont collaborates to mesh the art of creative design with the science of processes, parts and finished products.

Nissan Engine Cover

View Media

Skechers Running Shoe

View Media

SonarBell® Sonar Transponder

View Media

Experience and Insight

The success of engineered plastic components begins with design.  Within DuPont, our technical team works closely with yours from the very early stages to design in performance, sustainability and total part cost.

We offer a number of different guides focusing on different aspects of design. And our technical team can provide project-specific assistance based on a wide range of experience across different industries.

Design for Sustainability

DuPont considers design to be a holistic process, encompassing the full life cycle of polymers in a product.

For example, specifying a slightly higher performance material can lead to weight savings, which can result in a lower total life footprint.  Or identifying ways a product can be made locally might help reduce energy consumption while also lowering transport costs and increasing responsiveness to customers.

We can help you design for:

  • Lower-cost and lower-impact manufacturing. (Such as reduction of energy consumption and scrap).
  • Assembly and disassembly (i.e., recycling).
  • Part optimization (which can result in reduction of material usage).
  • Transportation (which can support footprint reduction).
  • Lightweighting and optimize energy use.

Add to this that DuPont has the broadest range of renewably sourced sustainable plastics, and we have many tools to help your business grow.

Design Checklist

The DuPont Design Check Chart includes design diagrams for wall, gate, assembly and other suggested technical “do’s and don’ts,” as well as a checklist designed to help you specify a DuPont product, based on your application requirements.

The DuPont Design Check Chart

Designing to Protect Sensitive Parts

Delicate automotive parts, such as sensors and actuators, are subject to higher temperatures and more extreme thermomechanical loads in smaller, hotter, low-emission engines, requiring a more sophisticated design approach incorporating high-performance plastics.  

High-Performance Thermoplastics for Sensors and Actuators Under the Hood

Design in Action: A Lighter Take on Truck Engines

Nissan Europe was seeking new design solutions to improve the fuel efficiency of two of its trucks, the Pathfinder and the Navara. The goal was to replace two metal engine components – the rocker cover and the front cover -- with high-performance polymers that could help reduce cost and weight, while helping to improve fuel efficiency.

DuPont™ Minlon® mineral reinforced nylon resin and DuPont™ Zytel® nylon resin were specified by Nissan as plastic design solutions durable enough to withstand a rigorous assembly process, and resistant to both high heat and harsh conditions under the hood.

DuPont application development engineers worked closely with Nissan, helping them produce both components to the same dimensions and levels of performance as the metal parts they replaced, at a cost savings of 30-35%, and a reduction in weight of 40%. Nissan is now considering other high-performance polymer solutions, to reduce costs and lower emissions.

Designing for Vibration

Plastic components in certain applications, such as washing machine spin tubs or fuel lines, can be deformed due to steady-state vibrations, either sinusoidal or random, requiring special approaches in design and materials selection.  

Designing for Vibration

Designing for Structural Strength

Glass-reinforced DuPont resins may be able to replace die-cast metals in structural uses, such as automotive hardware or office chairs, when certain structural strength design criteria are considered.

Diagonal Ribs Increase Torsional Rigidity

Designing to Withstand Fatigue

Incorporating fatigue resistance into plastic design solutions is essential for parts like housings or gears, which can be exposed to very large numbers of low-energy impacts over time.

Impact Fatigue – A New Way of Looking at the Durability of Engineering Plastics

Design in Action: A Better Return on Running Shoes

The U.S. footwear company SKECHERS was developing a new line of shoes featuring its Kinetic Return System (KRS), and was seeking a design solution to help convert impact forces and elastic energy into forward motion over the life of the shoe.

DuPont™ Hytrel® thermoplastic polyester elastomer was selected by SKECHERS, after consultation with DuPont material sciences resources, for its superior dynamic response, high flexibility and durability. DuPont then provided global support on the project, from measuring mechanical and biomechanical response during the design phase with the SKECHERS team in the U.S., to manufacturing consultation with the factory in China, providing training on how to mold Hytrel®, and assisting them as they put quality assurance measures in place.

Designing Stronger Joints

Combining joint design, materials properties and assembly methods allows for quick, precise joining of parts by both ultrasonic vibration and spin welding.

Joint Design A Critical Factor in Strong Bonds

Design in Action: A Sonar Innovation

The British company Subsea Asset Location Technologies (SALT) Ltd. was looking for design solutions for the SonarBell®, a passive sonar transponder that has helped revolutionize tracking of valuable assets, from fishing nets to scientific equipment.

DuPont™ Zytel® was chosen by SALT for the outer shell of the SonarBell®, and we provided ongoing support to SALT and its production partners, from the earliest prototype to the current production design. This included the provision of Zytel® test samples and material data, as well as guidance on mold and gate design. DuPont technical resources also provided input on spin-welding designs and operating parameters, to achieve optimum weld quality with Zytel®.

Designing Correct Pressure Tolerances

Factoring in the type of end closure is essential in setting stress tolerances for durable lighter bodies, ballcock valves, and other pressure vessels.

Pressure Vessel Design for Engineering Plastics

Designing With Self-Tapping Screws

Specifying the self-tapping screw that will work best for a specific part or product requires using a material’s flexural modulus to assess its ability to absorb stress.

Self-Tapping Screws: How to Choose and Use the Right One

Designing Snap and Press Fits

Using a press or snap fit can offer the advantages of labor reduction, elimination of assembly fixtures, equipment and/or inventories of separate fasteners, when done correctly.

Snap Fits and Press Fits

Designing for Complex Structures

Complex structures require plastic design solutions that address, among other factors, the fatigue strength of parts, including ribs, where applicable, measured for alternating and semi-alternating loads under different conditions.

Understanding the Behavior of Complex Structures Under Load

SonarBell®, SALT® and the acoustic reflection logos are trademarks of SALT Ltd