Introduction

MEGUM™, ROBOND™ and THIXON™ bonding agents together have been used for more than 80 years to bond rubber-to-metal substrates. Today, these bonding agents are used to bond a variety of elastomer compounds to metal and plastic substrates, including steel, stainless steel, aluminum, zinc, copper, polyamides, polyacetals, polyesters and PTFE (with some of these substrates potentially needing specific pretreatment). Using these bonding agents, the substrate bonds to the elastomer during the vulcanization process.

This guide primarily focuses on the application of water-borne bonding agents in comparison to standard solvent-based agents in the rubber bonding/vulcanization process. The pretreatment and preparation of the metal and plastic substrates prior to bonding with water-borne bonding agents is specifically described in this guide on page six “substrate cleaning.”

Typical bonded components

MEGUM, ROBOND and THIXON bonding agents are used in many bonding applications combining the unique properties of the rubber with the properties of the metal or non-metal substrate. Components bonded with MEGUM, ROBOND or THIXON are used in a wide variety of industrial applications including:

• Vibration control elements: springs, bumpers, bushings, suspension systems, clutch mounts, flexible couplings and engine mounts
• Corded-rubber belts and hoses
• Seals and gaskets
• Bearing elements for buildings and bridges
• Rollers
• Solid rubber tires
• Track pads for caterpillar vehicles, linings and protective coverings
• Metal-supported profiles

General description

The majority of MEGUM, ROBOND and THIXON bonding agents are low-viscosity, organic, solvent-based solutions and/or dispersions of polymers and other reactive chemicals. They are used as one-coat bonding agents or two-coat primer and cover-cement systems. Some products within the range are clear non-pigmented solutions. Water-borne MEGUM and ROBOND bonding agent products are also used in these applications. This Rubber-to-Substrate Bonding brochure describes the most commonly used products focusing principally on the use of water-borne products.

The proven chemistry from solvent-based bonding agents relies specifically on the dissolution of specific polymers; for instance, halogenated polymers. In water, this polymer chemistry is converted into a dispersion. In general, water-borne bonding agents, especially with pigmented dispersions, are a combination of pigments and polymer emulsions in water. These dispersions behave differently compared to solvent-based materials. For this reason, the handling and application of water-borne pigmented systems will be discussed in this guide in more detail.

For water-borne bonding agents, a specific paragraph is added in the summary section at the end of this guide.

Basic differences of water-borne and solvent-based bonding agents

In general, all regular solvent-based bonding agents are suspensions – meaning dissolved polymers and some additives in solvents together with insoluble solid substances (pigments).

For bonding agents with pigments, both water-borne and solvent-based materials are rather similar in handling and application. However, in other aspects of most water-borne bonding agents, the differences are significant and need to be discussed in detail.
The differences between solvent-based and water-borne bonding agents are mainly related to the environment of the soluble substances – especially of the polymeric nature. Instead of solutions in which the polymer chains are extended throughout the solution, in most water-borne bonding agents, due to the nature of the polymer, the chains must be made compatible to the water environment. This requires the creation of an emulsion, where the polymer chains are encapsulated in little droplets, which are then stabilized and dispersed in water. These little droplets are called micelles. Micelles are organic phases which are stabilized through surfactants where the hydrophilic (capable to mix with or dissolve in water) portion creates the compatibility to the water environment while the organic, or hydrophobic (water repellent) nature of the surfactant is like an anchor linked to the polymeric phase. The overall term for mixtures of different phases that are not soluble in each other is called dispersion. A typical example of an unpigmented water-borne dispersion would be milk – a dispersion of oil (fat) in water. Furthermore, mixtures of liquid in liquid (like milk) are called emulsion; mixtures of solids in liquid (like sand in water) are named suspension; and mixtures of liquid in gas (hairspray, for instance) are called aerosol. An overall fact is that all phases (liquid, solid, gas) are not soluble in each other and exist side-by-side, well dispersed in the complete mixture. The process of creating this kind of emulsion is more complex than creating a regular solvent-based adhesive solution, or with the use of pigments, a suspension. The result carries a couple of very special advantages and some specifics which need to be explained.

As visualized schematically in Picture 1, it is obvious that, in solvent-based adhesives, the functional polymeric ingredients have formed a solution. This prevents certain known combinations of specific polymers and additives/cross-linkers because these formulations, if reacting immediately, would provide a pot life rather than shelf life. In a water-borne bonding agent though, all relevant ingredients are separated from each other as the polymers are concentrated in the micelle; hence, “separated” from the environment through surfactants. The reactive partners are completely separated and will not react until the emulsion is destroyed.

The film formation, in comparison, is significantly different for that reason as well.

Schematically, this formation process is described below in Picture 2. During the drying process, the distance between the individual micelles starts to decrease, and, at a certain point, the droplets are so close that they begin to touch each other which leads into a fusion process combining the micelles to larger ones. Continued drying will drive this fusion further until the “point of no return” (coalescence) is reached.

As a result of this process, it is obvious that water-borne bonding agents have a significantly different film formation and film build compared to solvent-based materials. This process of coalescence will happen very rapidly, and, once coalescence has happened, water-borne films show an excellent film integrity through entanglement of the polymeric chains when micelles are broken, and the chains are allowed to come into contact.
Viscosity

Viscosity, in general, is described as the inner friction and, in the case of solvent-based bonding agents, is mainly a function of dry solids (not differentiating the effect of surface, surface chemistry, and shape of the solids), the polymer type, and molecular weight of the polymer used. As in a solvent solution, the polymer chains are fully dissolved and extended/elongated. The viscosity significantly reflects the influence of dry solids if compared to water-borne systems. In water-borne dispersions, the viscosity measurement is significantly less feasible to determine the correct dilution in comparison to solvent-based systems. Here, all ingredients are distinguished and separated, especially the polymers which are enclosed in micelles. These micelles represent the main influence on viscosity. Thus, micelles of the same size will affect in the same way.

In Table 1, a generic overview of water vs. solvent is given.

<table>
<thead>
<tr>
<th>Table 1: Generic Parameters of Solvent-based vs. Water-borne Bonding Agents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solvent-based</td>
</tr>
<tr>
<td>Polymer solution</td>
</tr>
<tr>
<td>Density < 1</td>
</tr>
<tr>
<td>Av. DS: 24-28%</td>
</tr>
<tr>
<td>Generally applied in dilution</td>
</tr>
<tr>
<td>Ketones/Aromatics</td>
</tr>
<tr>
<td>N/A (needs adjustments)</td>
</tr>
<tr>
<td>Some ‘cleaning’ capabilities</td>
</tr>
</tbody>
</table>

Looking into the homogenization process (e.g., stirring, shaking, tumbling), water-borne products require more delicacy compared to solvent-based materials, mainly to prevent foam build-up. Foam, regarding viscosity, has a significant impact and will falsify the measurement.

Compared to solvent-based systems, water-borne systems have surfactants and wetting agents added. The risk of creating “micro” foam is rather significant and problematic. This micro foam requires a very long time to dissipate and will affect not only viscosity but film formation and appearance as well.

Guidance for how to minimize these potential issues will be provided in the paragraph titled “Storage and Handling Prior to Use.”

Application

Surface energy and surface tension

In general, MEGUM™, ROBOND™ and THIXON™ bonding agents are applied as coatings to substrates, including mild and stainless steels, non-ferrous metals, plastics, natural and synthetic fabrics and fibers, glass fiber, and ceramics. Generally, a pretreatment is applied to the substrate to ensure that it is clean and that it provides a suitable bonding surface for the application of the bonding agents. For plastic materials, water-borne bonding agents always require specific pretreatment to provide a wettable surface.

This pretreatment includes the handling of cleaned parts AFTER the cleaning and BEFORE the application of the bonding agent. Here, water-borne materials show higher sensitivity to contamination such as fingerprints, which represent an oily contamination. Due to solvents used, solvent-based products do have certain “cleaning” capabilities during application. However, water is NOT a solvent for an oily contamination, and contaminants will prevent the bonding surface to be wetted and coated by a water-borne adhesive. Therefore, keeping cleaned parts contaminant-free is paramount when using water-borne products. Because of this physical and chemical uniqueness of water, the substrates, which need to be coated, require precise cleaning to ensure a high energy surface (~> 45 dyne/cm at the minimum).

[The SI unit N/m for surface energy refers to J/m² or 1000 dyne/cm, which is the most common unit used to describe surface energy.]

In Table 2, some physical parameters, regarding drying behavior and surface-wetting capabilities, are listed. The closer the surface tension/energy is, the better the wetting possibility the liquid will have on a specific substrate. The lower the surface energy of the substrate compared to the surface tension of the liquid, the smaller the capability to wet the surface with this liquid.
In Table 2, not only the evaporation number, but also the surface tension value reveals the exposed position of using water as a solvent. Drying a water-borne adhesive requires more energy, as the evaporation number is significantly higher than for all typical solvents used. In addition, the cleanliness of a high-energy surface or the conversion of a low-energy surface to a higher energy is required to assure the surface tension of water is overcome and the spreading of/wetting the surface with water is possible.

Also in Table 2, the listed surface energies – here “surface tensions” for liquids – indicate the significant difference of water to the most commonly used organic solvents.

As a liquid will only wet surfaces with higher surface energies than their own surface tension, it is obvious that a focus on cleaning for high-energy surfaces, like metal or glass, is required to allow a good wetting of water. On the other hand, if a low-energy surface is to be wetted, the surface energy needs to be increased to make it wettable with water (see Table 3).

A measurement based on this fact is the methodology to determine the contact angle from liquids on solid surfaces. This method shows very clearly how the interaction of the different molecules of the liquid and solid surface influences the behavior of liquids regarding spreading across the wetted surface.

Mathematically, this phenomenon of contact angle and the different interactions between the molecules of each area has been described by the Young’s equation (Picture 4):

$$0 = \theta = \arcsin \left(\frac{\delta_{lg}}{\delta_{sg} + \delta_{sl}} \right)$$

$$\delta_{lg} = \text{surface tension of the used liquid}$$

$$\delta_{sg} = \text{surface energy of the solid}$$

$$\delta_{sl} = \text{energy of interphase}$$

$$C = \text{critical surface energy}$$

Table 2: Evaporation Numbers and Surface Tension of Typical Liquids

<table>
<thead>
<tr>
<th>Solvent</th>
<th>Evaporation rate (diethylether = 1)</th>
<th>Surface tension [dyne/cm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEK</td>
<td>2.6</td>
<td>-25</td>
</tr>
<tr>
<td>MIBK</td>
<td>7</td>
<td>-24</td>
</tr>
<tr>
<td>(o,m,p)-Xylene</td>
<td>17</td>
<td>-28-32</td>
</tr>
<tr>
<td>Toluene</td>
<td>6.1</td>
<td>-44</td>
</tr>
<tr>
<td>Ethanol</td>
<td>8.3</td>
<td>-21</td>
</tr>
<tr>
<td>Iso-propanol</td>
<td>11</td>
<td>-22</td>
</tr>
<tr>
<td>MPA</td>
<td>34</td>
<td>-28 1)</td>
</tr>
<tr>
<td>Water</td>
<td>-80</td>
<td>68-73 4)</td>
</tr>
</tbody>
</table>

1) [Lehrbuch der Lacktechnologie, 4. Aufl., Farbe und Lack Ed.; Kap.: 2.2 – Vincenz Verl 2012]
2) [Umweltbundesamt Stoffdatenbank: www.stoffdaten-stars.de]
3) [BASF Techn. Merkblatt; M 5888 d; Okt. 2010; on-line]
4) for water this refers to be a function of temperature

Table 3: Critical Surface Energies of Solids

<table>
<thead>
<tr>
<th>Material</th>
<th>Surface energy [dyne/cm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTFE</td>
<td>-18</td>
</tr>
<tr>
<td>PP 2)</td>
<td>-29</td>
</tr>
<tr>
<td>PE-LD</td>
<td>-31</td>
</tr>
<tr>
<td>PA 6</td>
<td>-43</td>
</tr>
<tr>
<td>PA66 2)</td>
<td>-47</td>
</tr>
<tr>
<td>Al</td>
<td>-1200</td>
</tr>
<tr>
<td>Fe</td>
<td>-2500</td>
</tr>
</tbody>
</table>

www.Kern.de/de/Kunststofflexikon/Oberflächenenergie (online); ‘Kritische Oberflächenenergie von Kunststoffen und Vergleichsproben’
1) (for information only and depending on liquid for measurement)
2) Polymer Interface and Adhesion, Souheng Wu; 1982, Chapter 3

Gerd Wedler’s Lehrbuch der physicalischen Chemie; VCH Weinheim, 1985; 379/380

Picture 4
To understand this more vividly, **Picture 4a** shows the contact angle measurement to determine either the surface tension of an unknown liquid if the surface energy is known, or the surface energy of a solid surface in case the surface energy of the liquid is known. In addition, it clearly describes the forces between the different materials. If the interactive forces between the liquid molecules are higher than the interaction between liquid molecules and surface atoms, the liquid molecules tend to be more attracted to themselves, creating a large angle toward the surface (**Picture 4b**). On the other hand, if the attraction between liquid molecules and surface atoms is higher, the liquid molecules are ‘pulled’ towards the surface, the liquid film spreads, and the liquid “wets” the surface, thus creating a small contact angle (**Picture 4c**).

$$\cos \theta = \frac{\sigma_{sl} - \sigma_{lg}}{\sigma_{lg}} = \frac{\sigma_c}{\sigma_{lg}}$$

Picture 4a: Contact angle - the young equation
Picture 4b+c: Contact angle and wetting correlation

As described in **Table 3**, low-energy surfaces, like polyethylene or in the extreme PTFE, require a treatment to adjust the surface energy to higher levels for wetting with water-borne bonding agents. Here, plasma or corona treatment is widely used. Even nylon, by itself, will need a treatment to be able to be wetted by water. Luckily, most nylon compounds used in this industry contain fillers, like glass fibers, which will increase the surface energy to the extent that wetting with water-borne bonding agents doesn’t become a problem if cleaned thoroughly to assure a careful removal of processing aids or release agents used in the manufacturing process of the nylon part itself. Sometimes, when surface energies are borderline (as with nylon), roughening the surface can create enough interaction capabilities to support wetting with water-borne bonding agents. The fact that most water-borne bonding agents have wetting agents added, does help with lower energy surfaces as well.

Substrate cleaning

Referring to the previous chapter, it is obvious that for water-borne bonding agents, the cleanliness of the surface to be coated is critical for the success of the application. Please refer to the Substrate Preparation Water-borne Bonding-agents Guide for more details. For now, simply refer to the “Water-break-free” test which allows an easy check on a potential existing contamination issue or insufficient cleaning process.

This test mainly uses the behavior explained above in the contact angle measurement section. Water tends to spread and wet the surface when the surface is clean and has enough surface energy level. In **Picture 5**, this behavior is clearly seen. Glass or metal can usually be wetted easily. However, in the case of insufficient cleaning or contamination with organic material, it will immediately show insufficient water spreading.

To test this in a different way, a surface can be checked by slowly dipping the part in question into a container with clear water and monitoring the liquid meniscus. If the meniscus creeps up the surface or just shows little wrinkles along the line, the surface is ready for the first and possibly latter stages for water wetting. In case the meniscus is drawn into the water while dipping the part further down, the area, where the meniscus is monitored and virtually is drawn into the water, has insufficient surface energy to be wetted with water (**Picture 6a**). When the part is completely immersed, the non-wetted area will show up as a shiny little silver pearl (**Picture 6b**) thus indicating an area of entrapped air where the water was not able to replace the air on the surface.

Please refer also to our Substrate Preparation Guide – Water
Drying after coating

Due to the fact that evaporation happens at the interface to the air environment, the drying of emulsions versus solutions will become critical for this application within a short time period.

Obviously, during a regular drying step, the concentration of water will decrease faster from the outside to the bulk of the adhesive layer. Hence, the concentration of the emulsion decreases quickly from the outside toward the bulk of the material, accelerating coagulation from the outside-in. This, however, potentially can create a skin at the border to the air environment which will then entrap the remainder of water inside the adhesive layer.

During vulcanization, this water will begin to boil, creating very typical shaped areas of metal- or rubber/cover failure, the typical blisters in the bonded area of the part when destroyed.

To overcome this behavior, the process needs to be adjusted to make sure the water is driven out from the inside by, for instance, a preheating process of the substrate before the actual coating process. This will not only reduce the risk of over skinning, but of creating rust on the coated metal in case of primer coating as well.

In general, we recommend applying water-borne bonding agents onto substrates which have been heated up to 50°C – 80°C / 120°F – 180°F. See Picture 7 for a generic scheme of the application process and Picture 8a–e for some ideas how to use existing line set-up and how to convert from a solvent-based installed line to use water-borne bonding agents with minor adjustments. Here it depends on the size and type of the part in focus as the heat capacity of the overall part determines the potential set-up.
Although most of the application processes can be adjusted coming from a regular chain-on-edge application for solvent-based adhesives, some points need to be considered:

A) Water-borne bonding agents are NOT TOLERANT of insufficient metal cleaning.

B) Depending on part geometry and size/mass, the preheating process can be adjusted differently reflecting the part's thermal conductivity (the ability to heat up and keep the temperature over time).

C) As dispersions are shear sensitive, not all delivery systems for solvent-based materials are suitable for water-borne systems:
 => for delivery pumps, a double-membrane pump is highly recommended
 => in-line back-pressure regulators must not be activated through circulation of the material
 => high shear conditions in a circulation line must be prevented (right-angle plumbing)

D) As water-borne systems will coagulate and cannot be re-dissolved, the delivery piping needs to be kept in continuous flow and/or equipped with a possibility to be flushed with DI-water regularly (Use of spray guns designed for water-borne coatings is optional).

E) Spray guns need to be flushed when the line is stopped to prevent coagulation of material in spray nozzles.

F) In the case of dipping lines, as water does not dissolve organic contaminants, they will float and coat immersing parts each time; hence, unused tanks need to be covered and protected from organic contamination.

G) Water-borne application plays by a different set of rules; hence, production staff need to unlearn habits acquired from working with solvent-based adhesives.

Line preparation for water-borne bonding agents

In case an existing application line is planned to be used for water-borne bonding agents, these steps need to be followed precisely:

1) Check all materials in contact with bonding agent regarding water suitability to avoid corrosion
2) All materials in contact with water need to be either plastic or SST
3) Check delivery equipment for suitability to handle dispersions
4) Clean bonding-agent line thoroughly with solvent used to dilute the bonding agents
5) Flush line with MEK
6) Make sure MEK is not allowed to stay in the line for more than a couple of minutes
7) Flush line with DI-water until the rinse is clean

Flushing with water is essential as any remainder of solvent will cause coagulation (coalescence) and plug the line!

In case the line is to be returned to using solvent-based materials, follow the steps in reverse. Replacing the lines for use of each material (solvent/water) is recommended and absolutely preferred to minimize cross contamination.
Application – Generics

Hybrid systems

In general, hybrid systems – the combination of water-borne and solvent-based bonding agents – are possible.

Either a solvent-based primer together with water-borne cover or vice-versa can be applied if enough drying of each coating is secured. For example:

A) Using a water-borne primer requires the preheating of the part to secure the inside-out drying for this coating. Lower temperatures may be utilized, but, depending on the drying state, might not require additional heating for the drying of the solvent-based cover cement after it has been applied.

B) Using a solvent-based primer requires thorough drying/preheating of the part after the primer has been applied to assure the required inside-out drying of the water-borne cover after it has been applied.

Please refer to your technical contact for further guidance and support.

Application – Primer Specifics

Thixotropy

MEGUM™ W23500 and MEGUM W9300 are water-borne primers with excellent environmental resistance. Both are unique in their behavior as well.

Thixotropy describes a phenomenon in which viscosity is a function of shear – generally speaking, a function of the stirrer speed. Specifically, viscosity decreases as shear/stirrer speed increases. These two water-borne primers (depending on storage history) can appear in the first run as a pudding and may seem to be gelled. In this case, this appearance and behavior is wanted as it stabilizes the material during storage and reduces settling.

By using a stirrer (Picture 9 in “stirring” section), the speed needs to be increased in the beginning until the material, as a whole, starts moving. Until the pudding stops moving and begins to change its consistency, the stirrer speed needs to be kept high. At a certain point, the pudding will dissipate quickly, and the MEGUM water-borne primer will convert into a regular liquid with low viscosity. At this point, the stirrer speed needs to be reduced immediately to prevent foaming.

This entire process just takes a couple of minutes after the thixotropy is broken, and the material can be stirred as any other adhesive without further attention. Adding a little water (~1-2%) will speed up the degradation of the pudding to a normally-behaving liquid. If the material has been initially stirred and the thixotropy has been broken, the primer will stay in this consistency for several weeks or even months depending on age and dilution.

Caution: This primer will require consistent stirring during application (as any other bonding agent whether solvent- or water-borne), as partial settling will happen even while in low viscosity!
Storage and Handling Prior to Use

Storage

MEGUM™ W and ROBOND™ TR bonding-agent containers should be stored in dry conditions: indoors and away from direct sunlight. It is essential that water-borne products be prevented from freezing, as emulsions will be destroyed when frozen. DO NOT USE MATERIAL THAT WAS PREVIOUSLY FROZEN.

Avoid evaporation

After use, containers should be completely closed to minimize water evaporation and to prevent the ingress of contaminants. Evaporation of water will occur from open-topped MEGUM W and ROBOND TR bonding-agent containers, but significantly slower than with solvent-based products where gradually the product viscosity will increase. Although evaporation in water-borne agents will not cause an immediate reduction in product effectiveness, with increasing dry solids the potential for coagulation will become more serious. Coagulation will destroy the product and prevent it from further use.

If necessary, MEGUM W and ROBOND TR water-borne products can be diluted to a specific preferable density/dry solids content (as viscosity is less suitable for dilution ratio determination/monitoring). The use of de-ionized or de-mineralized water as diluent is essential. Tap water is not recommended due to its mineral content.

Please contact your technical specialist for further details.

Agitate before use

Most MEGUM, ROBOND and THIXON™ bonding-agent products contain dispersed solids that can settle during storage. It is important to displace and re-disperse any solids settlement by adequate and frequent stirring. Bonding-agent containers should be stirred using an electric or air-driven motor fitted with a propeller. As these are water-borne, no explosion-proof equipment is required; please refer to the MSDS for safe handling.

For water-borne bonding agents, some specifics regarding re-homogenization need to be followed:

Using a paint shaker should NOT be considered because foaming will be accelerated. The possibility of creating micro foam is increased by using a paint shaker and needs to be absolutely prevented as these micro bubbles will take a very long time to dissipate, thus negating all homogenization efforts.

As no solvents are involved, explosion-proof equipment is no longer required.

Stirring time

Some MEGUM, ROBOND and THIXON containers come equipped with internal agitators. Stirring time will be dependent on the degree of settlement and on the stirring technique employed. Flat stirrers, about half the diameter of the container, are usually more effective than propellers.

The stirring time should be enough to obtain a homogeneous material. A rough guideline is provided in Table 4 and Picture 9 where stirrer geometry is correlated to the design and size of the container.

The material should be at ambient temperature during stirring. Continuous agitation during use is recommended whenever possible. In general, the stirring time needs to be adjusted if settlement is still found and not fully re-dispersed!
Process control – viscosity measurement and controls

The viscosity of the water-borne bonding agents usually does not change significantly as a function of dry solids; hence, when diluting, we recommend checking the dry solids or density instead. Especially for dipping processes, viscosity and dry solids should be checked regularly, at least at the beginning of the shift if the process has already been established. To get a process established in the beginning, the dry solids (which normally have been established during the pilot phase) should be checked several times during the shift to gain information on the material’s consumption and evaporation of water. Especially with solids, any kind of contamination will falsify the dry solids measurement and should be prevented. In addition, the pH of the used bonding agent, at used dilution, needs to be kept stable within one pH value. The drift of pH will lead to coagulation and disposal of the material.

Solids content – measurement and control

MEGUM, ROBOND and THIXON bonding agents are composed of polymers, reactive components, and other ingredients dissolved or dispersed in water. Dry-solids content determination is a very accurate method of monitoring dilution ratios and of ensuring that the bonding agent product being used is within the set process specification.

Determination of the dry-solids content of a product involves evaporating the volatile solvent system from an accurately pre-weighed sample and then reweighing the resulting dried solids residue. Solids content determination requires the use of a scale with an accuracy of 0.0001 g.

The dry-solids content of the bonding agent under evaluation is expressed as a percentage of the original weight of the product sample.

Table 4: Stirring Recommendation as Function of Container Geometry and Size

<table>
<thead>
<tr>
<th>Container (kg)</th>
<th>r [%D]</th>
<th>h [%H]</th>
<th>rpm</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-5 sample</td>
<td>30-50</td>
<td>10</td>
<td>20-30</td>
<td>min 15 min</td>
</tr>
<tr>
<td>10 pail</td>
<td>30-50</td>
<td>10</td>
<td>20-30</td>
<td>min 30 min</td>
</tr>
<tr>
<td>25 pail</td>
<td>30-50</td>
<td>10-20</td>
<td>20-30</td>
<td>min 60 min</td>
</tr>
<tr>
<td>200 drum</td>
<td>40-75</td>
<td>10-25</td>
<td>40-50</td>
<td>8-24 h</td>
</tr>
</tbody>
</table>

(D=container diameter; H=container height)

Preparing MEGUM™, ROBOND™ and THIXON™ for Application

Dilution

MEGUM W or ROBOND TR bonding agents can be diluted to reduce their viscosity prior to spray or dip application. More specific information is available on the individual product technical data sheets.

These recommendations should be used as guidelines. The actual amount of diluent used should be adjusted to suit the application method and the equipment being used. Dilutions can be made by weight or volume, or to a specified viscosity (with less reproducible effects). For water-borne products, we recommend dilution to a specific density or dry solids instead.

Diluents should be added to the MEGUM W or ROBOND TR bonding agents and stirred to obtain a homogeneous product. The mixing operation should be carried out in a suitable area with equipment designed for safe use. Pigmented products should be stirred before use or dilution. The bonding agents and diluents should be at a similar temperature to the working environment in which the coating operation takes place.

![Stirrer geometry recommended as function of container design and geometry](image)
Test procedure for determining dry-solids content

First, accurately weigh a suitable clean container. Disposable aluminum cups with a diameter of approximately 50 mm and a height of 12 mm are recommended. They should be clean and stored under dry conditions at ambient temperature. Then, accurately weigh approximately 3g of the bonding agent into the solids-determination cup. Ensure that the sample has been properly stirred and is representative of the batch of product being assessed. Make sure that the weighing of the bonding agent proceeds quickly and accurately. Place the cup with the accurately weighed wet bonding-agent sample into an air-drying oven set at 130°C. If the bonding agent has a ketone- or an alcohol-solvent base, it should be dried for two hours. If the bonding-agent solvent base is xylene, or one of the other relatively slow-evaporating solvents (water), then the oven-drying cycle should be extended to three hours.

Finally, remove the dried bonding-agent sample from the oven and allow the sample to cool to ambient temperature in a dry area. Accurately reweigh the dried bonding-agent solids content sample cup. Calculate the percentage of dry-solids content as seen in Table 5a and b below. Two equation examples are given on the methodology. Please refer to the COA of the specific product to be used for the specific parameters.

Table 5a Equation 1: Calculating dry-solids content

For each sample taken:

- Weigh accurately two clean, dry aluminium foil cups
- Weigh accurately apt. 3g of bonding agent sample into each cup.
- Dry samples @ 130°C
 - 0.5h (THIXON and new MEGUM)
 - 2h (MEGUM Primers)
 - 3h (MEGUM Covers)
- Allow dried samples to cool to RT
- Weigh dried solids ACCURATELY

\[
DS[\%] = \frac{W_2 - W_0}{W_1 - W_0} \times 100[\%]
\]

Table 5a Equation 1: Calculating dry-solids content

Coverage = \(\frac{DS \times 10}{s \times DFT} = [m^2/kg] \)

DS = dry-solids content [% by weight]

s = dry-film density in g/cm\(^2\)

DFT = dry-film thickness in micrometer (μ)

Table 5b Equation 2: Calculating coverage
Upon request, each batch of bonding agent is supplied with a certificate of analysis that gives details of its dry-solids content, viscosity and density at the time of manufacture.

Film thickness – measurement and control

The thickness of the applied MEGUM™, ROBOND™ and THIXON™ bonding-agent film can affect bond performance. Carefully monitoring and controlling applied film thickness within the set specification is recommended. The dry-film thickness (DFT) can be determined using non-destructive methods like those used in the paint industry. Equipment is available for ferrous and non-ferrous metal substrates. DFT can be measured, for example, by IR heat-capacity determination via laser techniques, or with the well-known X-ray method allowing the parallel investigation of primer and cover layers. Proper calibration of the equipment, using components with similar surface profiles to those being coated, is important to ensure consistent DFT determination results. The average DFT can be calculated using a minimum of five measurements.

An alternative method involves accurately weighing a component before and after coating and then using the surface area of the coated part and the DFT of the bonding agent to calculate the applied average DFT.

Coverage

Theoretical MEGUM, ROBOND and THIXON bonding-agent coverage can be calculated using solids content, dry-film density, and DFT to be applied. This doesn't reflect the effect of overspray though, which is a function of the used application method.

Practical coverage is dependent on overspray and evenness of coating; both are affected by the method of application. Coverage values can be used to estimate product usage and the economics and efficiency of the application method. For water-borne bonding agents, overspray is by nature reduced compared to solvent-based systems as water has a higher density and tends to be more accurate regarding the flight pattern of the droplets.

For MEGUM water-borne systems, the following dry-film densities (calculated) are provided to calculate the coverage:

<table>
<thead>
<tr>
<th>MEGUM W</th>
<th>Density (g/cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9100</td>
<td>1.6</td>
</tr>
<tr>
<td>9200</td>
<td>1.4</td>
</tr>
<tr>
<td>9300/9301</td>
<td>1.7</td>
</tr>
<tr>
<td>9500</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Application Methods – Details

Brushing

As water-borne bonding agents are low in viscosity and are made with surfactants, brushing is NOT recommended due to the following reasons:

- Initiating foaming directly on the substrate
- Insufficient DFT control
- Puddling: causing thick DFT and lack of crack resistance
Spraying

The best possible application method is spraying which, in most cases, is possible without dilution in regard to cover and is best with dilution of the primer if lower DFT (~5-10% with DI-water) is required.

In general, spray nozzles of 0.8-1.0 mm (31.5-39.4 mil) are perfectly suited to apply MEGUM™ water-borne bonding agents. Please refer to our Technical Data Sheet for specific products to be used. Spray coating is used to apply MEGUM, ROBOND™ and THIXON™ bonding agents to large numbers of components or to large surface areas. With suitable jigs and masks, bonding agents can be applied to selected areas of a component. Spray application requires considerable technical control and will ensure a consistent, uniformly applied film. To ensure even coverage, parts should be rotated. Automatic conveyor-spray application machinery ('chain-on-edge') is used for maximum application efficiency. Hand-spray guns are useful for smaller runs. MEGUM, ROBOND and THIXON adhesives can be applied using the following types of spray equipment: air, airless, air mix, high-volume low-pressure (HVLP), or electrostatic-spray (all water-borne bonding agents are suitable for electrostatic application by nature).

Besides the general requirement of parts in touch with water (only plastic or SST to avoid corrosion), the usual spray equipment is suitable for water-borne bonding agents as well. The pumping system, however, needs to be approved for dispersion transport as described in paragraph “Application Generics.”

One thing in common though is the fact that dried films coagulate and cannot be re-dissolved. Therefore, flushing of the nozzle is essential as well as addition of a particle filter right before the gun; otherwise, the nozzle will plug!

For using a spray-pot, for instance, at a single manual station, a split feed with DI water for downtimes of the spraying nozzle should be implemented. This allows a simultaneous flushing of the spray pistol during the shutdown process.

Tumble spray (special spraying usually with lower required DFT)

Tumbling components in a rotating barrel containing MEGUM, ROBOND or THIXON bonding agents provides low-cost, uniform coverage. Best results are obtained with non-pigmented bonding agent products applied to relatively small-sized components. The coated components are dried by warm-air circulation in the tumbling barrel or after being discharged into drying trays.

Water-borne (pigmented) bonding agents are less suitable for regular tumble-spray application due to their requirement of relatively high energy input to flash off the water. This process may only work for small parts. However, specific application equipment, where heating/drying is done in different ways, is well known and proven for this application method. The higher dry-solids content of water-borne bonding agents is a definite advantage for this kind of application. (Please refer to your technical contact for more details).

The shape of the component and the effect of any abrasion between the components during tumbling can affect the uniformity of the applied bonding agent. In general, water-borne bonding agent films are less sensitive to this kind of interaction and concerns.
Dip coating

Dip coating is suitable for coating large numbers of components that require total coverage. The shape of the component is a major factor in determining whether it is suitable for dip coating. MEGUM™, ROBOND™ and THIXON™ bonding-agent viscosity and the rate of withdrawal of the coated component from the dip tank are critical in avoiding excessive build-up on the edges of the component. Once set up, dip coating requires minimal supervision and maintenance. For small runs, hand-dipping is usually most convenient and requires no special equipment. When handling large numbers of components, a conveyor dip line may be used with in-line metal cleaning and drying sections.

For water-borne bonding agents, no specific requirements are requested except that preheating the parts needs a temperature control of the tank and the parts must not exceed 45-50°C. If primer and cover is applied, a thorough drying after the primer application might be required before the cover application.

Water-borne bonding agents are suited for dipping applications and can be used either diluted or neat. All parts need to be corrosion proof if in contact with water. Like solvent-based bonding agents, these materials need to be stirred during application to prevent settling in the reservoir container. For dipping applications to provide consistent DFT, the withdrawing angle, as well as speed, has a significant influence. In general, when pulled out of the bath perpendicular to the surface of the tank, the thinnest DFT will be measured on the top and thickest on the bottom of the part.

Critical

Temperature: The dipping tank needs to be equipped with temperature control and cooling to assure consistent ambient temperature as the parts (which are preheated) will warm up the liquid over time.

Skinning: The surface needs to be kept moving to reduce a potential risk of skinning.

Organic contaminants: As water is incompatible with organic substances, any contamination tends to float on the surface. There is a great risk that these organic contaminants will coat the parts when transferring through the liquid surface of the tank and prevent the primer from coating the same surface.
- It is strongly recommended to keep the tank covered when not in use
- Keep tank skimmed regularly to remove all potential organics
- Recirculate tank volume through a filter (100-250 micron) at least once a shift

Roller coating

In general, roller coating is used to apply MEGUM, ROBOND and THIXON bonding agents to flat areas or onto cylindrical components. It is an efficient method to combine maximum coverage with minimum waste and uniformity of film thickness. Bonding agents are usually applied undiluted. Roller coating can also be used to coat cylindrical shafts or pipes using felt or foam rollers.

For water-borne bonding agents, this kind of application can be utilized as well. It is recommended to keep the DFT lower than 6-8 microns and preheat the parts as well. Hence, the reservoir must have a temperature control and cooling to make sure the temperature stays ambient when processing.

Depending on the product, we recommend referring to your Technical Service contact for guidance.
Storage and handling of coated components

Coated components can be handled and treated in the same way as with solvent-based bonding agents. However, because the film formation is very different compared to solvent-based bonding agents, the toughness of water-borne bonding agent films provides less sensitivity to mechanical influences.

Coated components can be stored for several days or weeks before bonding without affecting bond performance, but they must be protected from contamination. Unprotected components are particularly vulnerable to contamination by mold-release spray, hydraulic oil, and dust. Please remember never to handle coated parts prior to vulcanization with bare hands as fingerprints will contaminate the surface with oil and potentially influence the overall performance. This is true for both water-borne and solvent-based products.

Never keep coated parts in direct sunlight or UV influence during storage.

A temperature change from a cold storage area to a relatively warm bonding area can lead to atmospheric moisture condensing on the component bonding area and may result in poor bonding performance. This is less critical for water-borne bonding agents as they need to be preheated anyway.

Compared to solvent-based dried films, once water-borne systems have coagulated and dried, they cannot be re-dissolved or re-dispersed; hence, they need to be removed mechanically. Here, brass equipment is strongly recommended. Wetting with water prevents dusting during this operation.

Dried bonding agents need to be treated the same way as solvent-based and considered a combustible. The dried waste needs to be disposed of appropriately. Make sure the dried material does not encounter open flames, sparks or excessive heat.

Methods of Bonding

In-mold vulcanization/bonding

Compared to solvent-based bonding agents, vulcanization parameters and systematic controls apply for water-borne bonding agents to the same extent. Most bonded components are manufactured by in-mold vulcanization/bonding methods using compression (CM), transfer (TM), or injection molding (IM).

MEGUM™, ROBOND™ and THIXON™ bonding-agent systems provide the following advantages for in-mold bonding:

• Excellent lay-over of coated components that can be bonded several days or even weeks after coating if they are protected from contamination during storage.
• Resistance to prebake, thus allowing a time delay between loading of the mold and closing of the press. Stability to prebake is an advantage in loading multi-cavity molds.
• Effective with both low-temperature/prolonged-cure time and high-temperature/short-cure time vulcanization cycles. The vulcanization temperature-time cycle may be set according to the requirements of the rubber compound.
• Uncured films are resistant to the various physical stresses encountered in the in-mold vulcanization/bonding process.
• Hot-tear bond strength of the bonding agent to rubber bond is excellent, resisting the bond stresses experienced during the removal of the freshly bonded component that is still at molding temperature.
• MEGUM, ROBOND and THIXON bonding agents create a high cross-linking density between the bonding-agent layer and the substrate, as well as the bonding-agent layer and the rubber, which results in a high adhesive strength of the composite.
• MEGUM, ROBOND and THIXON bonding-agent films have good thermal stability at molding temperatures of up to ~200 °C.
Post-vulcanization bonding

The post-vulcanization (PV) bonding process can be used to bond cured rubbers to coated metal surfaces or to other cured rubber substrates. The bond is formed by applying temperature and pressure to the assembled parts.

The advantage of PV bonding is in reduced mold costs. Parts typically produced with this technology are bushes and mounts with concentric metal tubes where the inner tube is in-mold bonded and the outer is bonded using a PV-bonding technique.

In general, water-borne bonding agents behave similarly to their solvent-based counterparts. The preheating of parts during application applies as well. The toughness of the film with water-borne bonding agents will provide an advantage during the preparation process of the parts compared to the solvent-based mainly Cover II films (for more details please refer to your technical contact).

Pipe and tank lining

In this process, water-borne bonding agents provide a significant advantage, as explosion-proof equipment is not necessary. Water, used as the solvent, will provide additional worker health and safety advantages while working in a closed compartment. However, drying of these adhesives will require a longer time in comparison to solvent-based materials.

MEGUM™, ROBOND™ and THIXON™ bonding agents are used in the lining of pipes and tanks in combination with tacky adhesive “tie cements.” These provide the initial tack necessary while the rubber lining is rolled on in the lay-up process. The bond is formed while the rubber lining is being vulcanized using hot air, hot water and/or steam. Generally, bonding pressure at the vulcanization stage is low; therefore, it is very important that good initial contact is made between the uncured rubber sheet and the bonding agent tie cement during the lay-up procedure. Ambient temperature-cured rubber compounds with chemically-initiated cure systems can also be used with MEGUM, ROBOND and THIXON bonding agents. Rubber-lined tanks and pipes are used in the chemical and mineral industries where the resistance of rubber to abrasion and chemical attack is particularly important.
Influence of Vulcanizing Conditions

PV bonding

The quality of the rubber compound should be strictly controlled. The age of the compound is important in that scorched or partly-cured compounds may not give optimal processing characteristics. This may affect bond performance.

Vulcanizing temperature

Rubber-to-cement failure can occur if MEGUM™, ROBOND™ or THIXON™ bonding agents are allowed to prebake or precure before molds fill and pressurization operations are complete. Prebake of coated components usually occurs when either the mold-loading operation is prolonged, or there is a delay between loading the mold and the subsequent introduction of the rubber, mold closing, and application of molding pressure. High-temperature IM operations are particularly susceptible if mold-loading delays occur. The problem can be overcome by reducing insert loading time, reducing mold temperatures, or using a mold-loading jig to speed up loading time.

MEGUM, ROBOND and THIXON bonding agents designed to give prolonged resistance to prebake also are available.

Rubber compound sheet used for CM should have a clean bonding surface. There should be no surface bloom of accelerators, curatives, plasticizers or other rubber chemicals that may interfere at the MEGUM, ROBOND or THIXON adhesive rubber-bonding interface and eventually lead to poor bonding performance. If rubber compound has been stored for long periods, it is advisable to pre-mill before molding to ensure proper incorporation of compounding ingredients and provide a fresh bonding surface.

Bonding pressure

Good contact between the rubber compound and MEGUM, ROBOND or THIXON bonding agents is essential to obtain maximum bonding potential. Bonding pressure is required to achieve this contact.

- In-mold bonding: rubber-fill and pressurization should be completed as quickly as possible after the coated components have been loaded.
- Roller and pipe covering: bonding pressure is applied by tape wrapping un-vulcanized rubber covering, followed by steam autoclave curing.
- Lay-up: used for the lining of tanks, pipes, and other vessels, bonding pressure is minimal – and surface contact pressure is applied only during the application of the un-vulcanized rubber sheet. Tacky tie cements are used; usually manufactured by dissolving some of the un-vulcanized rubber sheet in an organic solvent. The tie cement is applied over standard MEGUM, ROBOND or THIXON bonding agent primer/cover-cement bonding systems.
Mold design
Transfer and injection molds for rubber-bonded components should be designed to reduce the possibility of MEGUM™, ROBOND™ or THIXON™ bonding agents being removed, or “swept,” from the coated substrate as the un-vulcanized rubber enters the mold. The un-vulcanized rubber is of relatively high viscosity and moving at considerable speed as it enters the mold. Mold-entry ports or pressure-relief holes should not be situated adjacent to the rubber/substrate bonding interface.
Molds involving the assembly of many parts should be designed to minimize assembly time and reduce the possibility of prebake of the coated substrate between mold-loading and mold-closure.
Multi-cavity molds may require a loading-jig to reduce the mold-loading time of the coated components and avoid prebake.

Summary of Using Water-borne Bonding Agents
In general, water-borne bonding agents are on par with their solvent-based counterparts regarding performance and film integrity. With our new generation MEGUM W9300 and MEGUM W9500, the performance is at the same level as solvent-based systems, not only under static but dynamically-stressed applications as well (please refer to your technical contact for more details).

Some differences do apply and need to be considered:
a) AVOID FREEZING! Storage conditions should be
0°C (32°F) – 40°C (104°F)
b) Significant advantage regarding EHS: No explosion-proof equipment necessary
c) NO PAINT SHAKER for re-homogenization
d) Refer to stirring recommendations for re-dispersion step before application: prevent foaming
e) Dilution possible with DI-water
f) Dilution control with determination of density or dry solids recommended (viscosity change insignificant)
g) As water-borne dispersions are incompatible with organic contaminants, thorough cleaning of surfaces prior to application is required
h) Parts need to be preheated before coating: 50°C – 80°C (~120°F-180°F)
i) Conventional spray equipment possible: parts in contact made of plastic or SST
j) Best results with HVLP guns
k) Storage of coated parts similar to solvent-based bonding agents:
 - Avoid contamination and UV light
 - Storage up to four weeks without loss of activity possible (refer to your own testing)
 - Film integrity improved compared to most other solvent-based products
l) Cleaning:
 - wet bonding agent films (clean with water)
 - dried films (only removable with mechanical effort sometimes with organic solvents)
 - dried films (need to be considered as flammable solids – if completely dry as a combustible Class II and disposed of accordingly)