Silicone adhesives for transdermal drug delivery systems

Product Applications and Benefits
Transdermal drug delivery patches are designed to deliver a therapeutically effective amount of drug across a patient’s skin to efficiently treat targeted diseases. Transdermal patches typically involve a pressure sensitive adhesive used as a patch fixation system and/or drug matrix.

Every specific transdermal patch typically requires a number of properties that can be drug dependent like:

- Good adhesion profile for the application period
- Adequate drug loading
- Manageable patch size
- Sufficient skin flux of the drug
- Sufficient control of the delivery rate to avoid overdosing
- Depletion rate over the designed dosage period

This brochure will help you choose the right adhesive to meet your specific needs. Silicone adhesives are currently used in a wide range of pharmaceutical applications from hormone therapy to central nervous system related pathologies.

Liveo™ BIO-PSA Silicone Adhesives are chemically very stable, non-sensitizing, non-irritating and non-cytotoxic.

U.S. Food and Drug Administration Drug Master Files and Technical Files are available for products used in pharmaceutical applications.

We work with our customers to ensure that our silicone adhesives meet their regulatory and toxicology requirements. DuPont is ISO 9001 Certified and compliant with regulatory guidelines appropriate to your needs.

We also work with our customers to customize our solutions to their specific needs.
BIO-PSA silicone adhesives

Silicone adhesive technology for transdermal and topical drug delivery

Transdermal and topical drug delivery systems need suitable adhesives to secure the patch to the skin and insure proper drug loading, stability and release. DuPont has specifically designed a line of pressure sensitive adhesives, the Liveo™ BIO-PSAs, to prepare transdermal and topical drug delivery systems.

Liveo™ BIO-PSAs are compatible with a wide range of drugs, skin permeation enhancers and other suitable excipients, in liquid or powder forms.

Liveo™ BIO-PSAs can be formulated to provide various rates of drug permeability through the skin allowing a controlled drug release to a patient over time.

Liveo™ BIO-PSAs offer excellent skin adhesion for extended periods of time, moisture resistance, and are non-skin-irritating and non-skin-sensitizing.

DuPont offers a variety of BIO-PSA silicone adhesives according to their:

- Compatibility with amine functional molecules
- Polarity level (silanol content)
- Tack level
- Processing technology, solvent-based or hot melt system

Chemistry overview

Liveo™ Standard BIO-PSAs are obtained following a condensation reaction between a silanol endblocked polydimethylsiloxane (PDMS) and a silicate resin. To produce Liveo™ Amine-Compatibel BIO-PSAs, the adhesive is further reacted with trimethylsilyl in order to reduce the silanol content of the adhesive polymer. Both standard and amine-compatible Liveo™ BIO-PSAs are then diluted in the appropriate solvent, mainly ethyl acetate or n-heptane, to obtain solvent-based materials. To produce a solvent-free version of the standard BIO-PSA, having melt characteristics applicable for hot melt coating, a PDMS plasticizer is added to the adhesive obtained from the reaction between silanol endblocked PDMS and silicate resin.
Customized pressure sensitive adhesives (PSAs)
Liveo™ BIO-PSA Silicone Adhesives are designed for flexibility through custom formulation to meet your needs. DuPont’s current product line of BIO-PSAs allows you to adjust various critical parameters which are considered during the development of a patch drug delivery system including: adhesive performance, drug compatibility and diffusion, and coating condition (solvent based or hot melt). The safety, efficacy and stability of Liveo™ BIO-PSAs have been demonstrated by more than 30 years of use in the healthcare industry.

Benefits of Liveo™ BIO-PSA Silicone Adhesives in drug delivery
- Strong adhesion with long wear characteristics
- Customized adhesion for adapting the application, skin type, level of activity and environment
- Compatibility with amine functional drug—various silicone options are available for ease of formulation with drugs
- Controlled drug diffusion rate
- Easy removal from skin
- Non-irritating and non-sensitizing over extended wear

Processing options
Liveo™ BIO-PSAs can be coated as a diluted form or as a hot melt material. The solvent-based adhesives are mainly available in heptane or ethyl acetate; the solvent selection is chosen based on the drug solubility and coating criteria. The hot melt adhesive is solvent-free and can be softened with heat, then cooled to a nearly flow-less state.

Both adhesive forms are generally coated onto a suitable release liner (e.g., fluoro coated liner) and then transferred to the final substrate (e.g., backing) by laminating.

Why controlled drug delivery?

Drug concentration

Toxic level
Effective level
Non-effective level
Therapeutic window
Administration time

- Controlled drug delivery
- Multi dose treatment
Summary table of Liveo™ BIO-PSAs

<table>
<thead>
<tr>
<th>Liveo™ BIO-PSA Silicone Adhesives</th>
<th>Resin/Polymer Ratio</th>
<th>Silanol Content</th>
<th>Typical Solids Content %</th>
<th>Solvent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard BIO-PSA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7-4401*</td>
<td>65/35</td>
<td>High</td>
<td>70</td>
<td>Heptane</td>
</tr>
<tr>
<td>7-4402*</td>
<td>65/35</td>
<td>High</td>
<td>60</td>
<td>Ethyl Acetate</td>
</tr>
<tr>
<td>7-4501</td>
<td>60/40</td>
<td>High</td>
<td>70</td>
<td>Heptane</td>
</tr>
<tr>
<td>7-4502</td>
<td>60/40</td>
<td>High</td>
<td>60</td>
<td>Ethyl Acetate</td>
</tr>
<tr>
<td>7-4601</td>
<td>55/45</td>
<td>High</td>
<td>70</td>
<td>Heptane</td>
</tr>
<tr>
<td>7-4602</td>
<td>55/45</td>
<td>High</td>
<td>60</td>
<td>Ethyl Acetate</td>
</tr>
<tr>
<td>SRS7-4501</td>
<td>60/40</td>
<td>Medium</td>
<td>70</td>
<td>Heptane</td>
</tr>
<tr>
<td>SRS7-4502</td>
<td>60/40</td>
<td>Medium</td>
<td>60</td>
<td>Ethyl Acetate</td>
</tr>
<tr>
<td>SRS7-4601</td>
<td>55/45</td>
<td>Medium</td>
<td>70</td>
<td>Heptane</td>
</tr>
<tr>
<td>SRS7-4602</td>
<td>55/45</td>
<td>Medium</td>
<td>60</td>
<td>Ethyl Acetate</td>
</tr>
<tr>
<td>Hot Melt 7-4560</td>
<td>60/40</td>
<td>High</td>
<td>100</td>
<td>None</td>
</tr>
<tr>
<td>Amine-Compatible BIO-PSA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7-4101*</td>
<td>65/35</td>
<td>Low</td>
<td>60</td>
<td>Heptane</td>
</tr>
<tr>
<td>7-4102*</td>
<td>65/35</td>
<td>Low</td>
<td>60</td>
<td>Ethyl Acetate</td>
</tr>
<tr>
<td>7-4201</td>
<td>60/40</td>
<td>Low</td>
<td>70</td>
<td>Heptane</td>
</tr>
<tr>
<td>7-4202</td>
<td>60/40</td>
<td>Low</td>
<td>60</td>
<td>Ethyl Acetate</td>
</tr>
<tr>
<td>7-4301</td>
<td>55/45</td>
<td>Low</td>
<td>70</td>
<td>Heptane</td>
</tr>
<tr>
<td>7-4302</td>
<td>55/45</td>
<td>Low</td>
<td>60</td>
<td>Ethyl Acetate</td>
</tr>
</tbody>
</table>

Typical properties of Liveo™ BIO-PSAs

Solvent-based BIO-PSAs

<table>
<thead>
<tr>
<th>Parts resin</th>
<th>Tack level</th>
<th>Peel adhesion (g/cm)</th>
<th>Shear (kg/6.3cm²)</th>
<th>Complex viscosity at 0.01 rad/s and 30°C (P)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Standard and SRS Amine-compatible</td>
<td>Standard and SRS Amine-compatible</td>
<td>Standard and SRS Amine-compatible</td>
</tr>
<tr>
<td>55</td>
<td>High</td>
<td>500</td>
<td>700</td>
<td>15</td>
</tr>
<tr>
<td>60</td>
<td>Medium</td>
<td>700</td>
<td>900</td>
<td>16</td>
</tr>
<tr>
<td>65*</td>
<td>Low</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Hot melt BIO-PSAs

<table>
<thead>
<tr>
<th>Parts resin</th>
<th>Tack level</th>
<th>Peel adhesion (g/cm)</th>
<th>Shear (kg/6.3cm²)</th>
<th>Complex viscosity at 0.01 rad/s and 30°C (P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>Very high</td>
<td>300</td>
<td>11</td>
<td>5.10⁵</td>
</tr>
</tbody>
</table>

* These are used in combination to optimize the adhesive performance.
Visco-elastic properties of Liveo™ BIO-PSAs

Liveo™ BIO-PSA Silicone Adhesives are visco-elastic compounds based on the “resin-in-polymer” concept. They are typically evaluated by the dynamic rheology “oscillation test” method. The rheological parameters, viscous modulus (G''), elastic modulus (G') and complex viscosity (Eta*) are scrutinized for performance comparison.

Principle of adhesion/release: When the viscous modulus is low, optimum wetting/optimum bonding occurs. Sufficient elasticity is required to break the adhesive interface and remove the device.

The increase in resin content within the adhesive polymer — from 54% to 63%—results in increased elastic modulus (G') and viscous modulus (G'') values over the entire frequency range. These physical characteristics are foremost to achieve lower tack and higher cohesiveness (cold flow resistance). Good adhesive performance is obtained when G' values are low (possibly lower than G'') at low frequency rates (e.g., 0.01 rad/s). Nevertheless, the swift increase in G' values (preferably higher than G'') as the frequency is increased exhibits the optimum creep resistance behavior.

Historical data show that the higher the complex viscosity (Eta*) at low frequencies (e.g., 0.01 rad/s), the more difficult it is for an adhesive to creep. Therefore, when the resin content of a Liveo™ BIO-PSA is increased, the adhesive becomes less likely to creep (cold flow).

Toxicology Testing and Summaries

Our toxicology group has performed descriptive toxicology studies (acute, subchronic, reproductive testing and neurotoxicity screening) as well as more specialized investigations, including medical material testing (Class I–VI), whole-body autoradiography, pharmacokinetics, metabolism, image analysis, biochemical and in vitro/in vivo dermal absorption evaluations. We also offer customized resources for your research and consulting needs.

Our toxicology group can also provide Health Summaries, study reports and/or Health Opinions based on safety and toxicology information that has already been generated.

Regulatory Support

Our regulatory team has expertise in supporting the use of silicone adhesives globally in drug products and medical devices. We will partner with you through clinical phase and marketing authorization review to support the use of BIO-PSA products in your application. Most products are already covered in US Drug Master Files and new products continue to be added in support of specific applications.

Regulatory Information Sheets

To help support the registration of drug products containing these adhesives, summaries of “Product Regulatory Information” can be prepared and provided. These summaries follow the International Pharmaceutical Excipient Council (IPEC) Excipient Information Package (EIP) template and include such sections as:

• General Product Information
• Manufacturing, Packaging and Release Site
• Physicochemical Information
• Regulatory Information (based on composition and manufacturing process)
• Biocompatibility Information
• Miscellaneous Product Information
To learn more about DuPont’s healthcare solutions visit: www.dupont.com/healthcare.html

For country-level information, visit: www.dupont.com/corporate-functions/our-company/global-locations.html

REFERENCES:

REFERENCES:

REFERENCES:

