Application

- A shroud is a segmented ring with holes drilled radially outward for variable vane stems used inside a jet engine compressor. Some are split.
- Grooves are cut into shroud to accept metal connecting ring, frequently with an abradable seal.
- Shrouds are typically aluminum, stainless steel, or titanium.
- Shrouds utilize bushings to enhance wear and reduce friction for variable vane stems.
- Inner shrouds typically float on the engine axis.

Challenges

- Damage can occur to expensive metal components such as vanes if bushings wear out prematurely.
- Components need to withstand thermal excursions for duration of expected engine life.
- Shrouds need to withstand impact, loading, and maintain relative location of vanes.
- Shrouds need to be designed to allow simultaneous assembly with multiple vanes.

Solution

Design shrouds in light weight, high temperature, wear resistant Vespel® SCP-5050 composite material instead of metal.

Features and Benefits

- High temperature material capabilities in application environments in excess of 600 °F/315 °C. *
- Longer component life due to reduced wear interfaces, utilization of bearing material for entire shroud, and elimination of bushing life issues.
- Proven impact resistance.
- Potential weight savings of 40% over aluminum and 75% over stainless steel and titanium due to lower density of composite materials.
- Fewer parts to stock and assemble through bushing elimination.
- Lower system cost through part consolidation.
- Provide largest subassembly possible.
- Lower friction vs. metal with dynamic coefficient of .2 or less.
- Vibration dampening properties of composites versus metals.

*Actual temperature limits are dependent on specific application conditions. For more information, please contact your DuPont representative.
More Hot Wear Resistance

Figure 2. Wear*, 500,000 cycles at 343 °C (650 °F)

![Graph showing wear percentage and wall angles for different materials](image1)

*Oscillating wear tests of bushings with both axial and cantilevered loads

Stiff when Hot

Figure 3. Young’s and flexural modulus at 260 °C (500 °F)

![Graph showing Young’s and flexural modulus for different materials](image2)