DuPont™ MULTIBASE™ and Hytrel® additive solutions, as well as Vamac® resins, enable our customers to design best-in-class wire and cable compounds to respond to these demanding industry performance requirements.

Industry needs
The wire and cable market is highly diversified by application and technical requirements. Compounders also must design innovative and differentiated solutions while addressing evolving trends and regulations including digitalization, electrification, sustainability, and safety. Complying with the industry standards can be complex and expensive.

Solutions for halogen-free flame retardant (HFFR) formulations
MULTIBASE™ thermoplastic additives are silicone masterbatches that allow optimized rheological conditions to enable a smooth extrusion process in highly-filled polyolefin-based HFFR compound formulations (containing high loadings of ATH/MDH, >65%).

Key benefits of MULTIBASE™ additives in HFFR compounds:

During Cable Extrusion Process
- Higher throughput
- Lower energy consumption
- Reduced torque
- Die pressure reduction

On the Cable
- Smooth cable surface (reduced melt fracture)
- Better cable performance due to good filler dispersion
- Low order of toxicity (no toxic fumes while burning)
- Permanent low coefficient of friction

Recommended grades

<table>
<thead>
<tr>
<th>HFFR compound</th>
<th>Solution (1-2% use rate)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE-based</td>
<td>MB50-002, MB25-502</td>
</tr>
<tr>
<td>EVA-based</td>
<td>MB50-320</td>
</tr>
</tbody>
</table>

DuPont™ MULTIBASE™ and Hytrel® additive solutions, as well as Vamac® resins, enable our customers to design best-in-class wire and cable compounds to respond to these demanding industry performance requirements.
Solutions for adding flexibility without plasticizer

For wire and cable PVC formulations, the benefits of Hytrel® thermoplastic elastomers include:
- Softens PVC without migration of plasticizer
- Improves mechanical properties across a wide range of temperatures
- Demonstrates better impact strength and improvement of flexibility at low temperature
- Exhibits consistent performance over time
- Improves chemical resistance, specifically oil resistance

<table>
<thead>
<tr>
<th>Formulation</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>PVC (%)</td>
<td>100</td>
<td>85</td>
<td>75</td>
</tr>
<tr>
<td>Hytrel® 4056 (%)</td>
<td>0</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td>DOP plasticizer (%)</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Hardness (shore A)</td>
<td>94</td>
<td>85</td>
<td>80</td>
</tr>
<tr>
<td>Brittle point (°C)</td>
<td>-22</td>
<td>-34</td>
<td>-60</td>
</tr>
</tbody>
</table>

Solutions for designing highly flexible oil- and heat-resistant elastomer compounds for -40°C+ to +160°C

Vamac® ethylene acrylic elastomers offer wide compounding variability with curatives, fillers, anti-degradants, plasticizers, and process aids to meet a broad range of different requirements. DuPont offers support in formulation development and selection of additives.

Vamac® is used in applications requiring heat, chemical resistance, low-temperature flexibility, and critical safety requirements for flammability, toxicity, and smoke density.

Vamac® dipolymers are halogen-free polymers and can be compounded with high loadings of non-halogenated flame-retardant fillers like aluminum or magnesium hydroxide without negatively impacting compound viscosity.

Benefits for wire and cable compound applications:
- Low smoke and toxicity compounds
- Broad temperature range: -40°C to 160°C, Peak>200°C
- Excellent chemical and oil resistance
- Superior low-temperature flexibility
- Lighter weight due to thinner wall cable construction
- Low levels of off-gases

Comparison oil swell and glass transition temperature (Tg) of Vamac® vs. ethylene-vinyl acetate rubber (EVM)

Vamac® compounds have a ca. 10°C lower Tg at a comparable oil swell to EVM. They also demonstrate a ~20-30% better oil resistance at the same Tg as EVM.

Vamac® HFFR compounds are frequently blended with thermoplastic polymers, mainly to improve processing and physical properties. Suitable thermoplastics include Hytrel® and thermoplastic EVAs.