Fuel Pool Clean Up
Product Recommendations

Spent fuel is handled and stored under water for safety. Fuel pool clean-up systems are employed to ensure quality and clarity of this water. Dow provides special ion exchange resins in either single beds or mixed beds made from individual components or ready to use mixed beds that can be used for spent fuel pool clean-up systems. In certain cases reverse osmosis membranes can be used to upconcentrate the radioactive stream and thus reduce the waste amount to be treated.

<table>
<thead>
<tr>
<th>TECHNOLOGY</th>
<th>PRODUCT</th>
<th>FEATURES AND RECOMMENDED USES</th>
<th>TYPE</th>
<th>MATRIX</th>
<th>MINIMUM TOTAL VOLUME CAPACITY (Eq/L)</th>
<th>IONIC FORM AS SHIPPED</th>
</tr>
</thead>
<tbody>
<tr>
<td>ION EXCHANGE RESINS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMBERLITE™ IRN97 H</td>
<td>High capacity 10% DVB uniform particle size cation resin for purification of fuel pool in VVER circuit #4 systems with good resistance to oxidative conditions.</td>
<td>SAC</td>
<td>GEL</td>
<td>2.10</td>
<td>H⁺</td>
<td></td>
</tr>
<tr>
<td>AMBERLITE™ IRN99 H</td>
<td>Premium 16% DVB uniform particle size cation resin with very high capacity and oxidative stability. High selectivity for cationic radioisotopes and high total capacity for long runs resulting in reduced waste and exposure. The high oxidative stability results in reduced fuel pool sulfate concentration and long resin life in this oxidative environment.</td>
<td>SAC</td>
<td>GEL</td>
<td>2.50</td>
<td>H⁺</td>
<td></td>
</tr>
<tr>
<td>AMBERLITE™ IRN9675 H</td>
<td>Nuclear grade macroporous cation resin designed to remove radioactive colloidal material in all nuclear applications. Often used as an overlay above a mixed bed.</td>
<td>SAC</td>
<td>MACRO</td>
<td>1.70</td>
<td>H⁺</td>
<td></td>
</tr>
<tr>
<td>AMBERLITE™ IRN78 OH</td>
<td>Premium high solids uniform particle size anion resin with very high capacity used for removal of anionic radioisotopes.</td>
<td>SBA</td>
<td>GEL</td>
<td>1.20</td>
<td>OH⁻</td>
<td></td>
</tr>
<tr>
<td>AMBERLITE™ IRN9766 OH</td>
<td>Macroporous anion resin designed to remove radioactive colloidal material in all nuclear applications. Often used as an overlay above a mixed bed or a cation resin.</td>
<td>SBA</td>
<td>MACRO</td>
<td>0.85</td>
<td>OH⁻</td>
<td></td>
</tr>
<tr>
<td>READY TO USE MIXED BEDS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMBERLITE™ IRN160 H/OH</td>
<td>High capacity nuclear grade mixed bed composed of uniform particle size AMBERLITE™ IRN97 H and IRN78 OH Resins on a 1:1 equivalent basis. Designed to minimize separation of anion and cation during installation and transfer.</td>
<td>MB</td>
<td>GEL/GEL</td>
<td>2.10/1.20</td>
<td>H⁺/OH⁻</td>
<td></td>
</tr>
<tr>
<td>AMBERLITE™ IRN170 H/OH</td>
<td>Premium nuclear grade mixed bed composed of uniform particle size AMBERLITE™ IRN99 H and IRN78 OH Resins on a 1:1 equivalent basis. Offers maximum oxidative stability and high operating capacity to achieve low fuel pool sulfate concentration and long resin life.</td>
<td>MB</td>
<td>GEL/GEL</td>
<td>2.50/1.20</td>
<td>H⁺/OH⁻</td>
<td></td>
</tr>
<tr>
<td>AMBERLITE™ IRN9882</td>
<td>Nuclear grade macroporous mixed bed composed of 40% cation resin (12% DVB) and 60% AMBERLITE™ IRN9766 OH Resins on a volume basis. Offers high exchange kinetics and the ability to remove colloids for highest decontamination rates.</td>
<td>MB</td>
<td>MACRO/MACRO</td>
<td>1.65/0.85</td>
<td>H⁺/OH⁻</td>
<td></td>
</tr>
<tr>
<td>REVERSE OSMOSIS</td>
<td>DOW FILMTEC™ Elements</td>
<td>Please contact your Dow representative for assistance.</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Key:
1 = Mixed beds using individual cation and anion must be prepared in-situ.
SBA = Strong Base Anion
SAC = Strong Acid Cation
MB = Mixed Bed
Powering performance worldwide.

With a large global manufacturing footprint, strong R&D expertise and technical support services and systems, we supply high market volumes with high quality. Dow partners with you, our customer, to understand unmet needs and develop tailored solutions.

RESEARCH & DEVELOPMENT
- Chauny, France*
- Collegeville, PA*
- Edina, MN*
- Huzhou, China
- Kaust Jeddah, KSA
- Midland, MI*
- Shanghai, China*
- Tarragona, Spain**

*DW&PS Technology Center
**Global Water Technology Center

MANUFACTURING
- Chauny, France
- Collegeville, PA
- Edina, MN
- Fombio, Italy
- Huzhou, China
- Jubail Industry City, Saudi Arabia
- Menlo Park, CA
- Midland, MI
- Qingpu, China
- Soma, Japan

COMMERCIAL OPERATIONS
- Astana, Kazakhstan
- Bangkok, Thailand
- Budapest, Hungary
- Dubai, UAE
- Horgen, Switzerland
- Johannesburg, South Africa
- Kuala Lumpur, Malaysia
- Moscow, Russia
- Mumbai, India
- Nairobi, Kenya
- Rheinmüster, Germany
- São Paulo, Brazil
- Seoul, Korea
- Sydney, Australia
- Tokyo, Japan
- Warsaw, Poland

Water & Process Solutions

<table>
<thead>
<tr>
<th>Address</th>
<th>Asia Pacific</th>
<th>Europe, Middle East, Africa</th>
<th>Latin America</th>
<th>North America</th>
</tr>
</thead>
<tbody>
<tr>
<td>7600 Metro Blvd.</td>
<td>+86 21 3851 4988</td>
<td>+31 115 672626</td>
<td>+55 11 5184 8722</td>
<td>1-800-447-4369</td>
</tr>
<tr>
<td>Edina, MN 55439</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For more information, contact our Customer Information Group:

- Asia Pacific: +86 21 3851 4988
- Europe, Middle East, Africa: +31 115 672626
- Latin America: +55 11 5184 8722
- North America: 1-800-447-4369

dowwaterandprocess.com

WARNING: Oxidizing agents such as nitric acid attack organic ion exchange resins under certain conditions. This could lead to anything from slight resin degradation to a violent exothermic reaction (explosion). Before using strong oxidizing agents, consult sources knowledgeable in handling such materials.

NOTICE: No freedom from infringement of any patent owned by Dow or others is to be inferred. Because use conditions and applicable laws may differ from one location to another and may change with time, Customer is responsible for determining whether products and the information in this document are appropriate for Customer’s use and for ensuring that Customer’s workplace and disposal practices are in compliance with applicable laws and other government enactments. The product shown in this literature may not be available for sale and/or available in all geographies where Dow is represented. The claims made may not have been approved for use in all countries. Dow assumes no obligation or liability for the information in this document. References to “Dow” or the “Company” mean the Dow legal entity selling the products to Customer unless otherwise expressly noted. NO WARRANTIES ARE GIVEN EXCEPT FOR ANY SPECIFIC WARRANTY SET FORTH HEREIN; ALL IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE ARE EXPRESSLY EXCLUDED.

All information set forth herein is for informational purposes only. This information is general information and may differ from that based on actual conditions. Please note that physical properties may vary depending on certain conditions and while operating conditions stated in this document are intended to lengthen product lifespan and/or improve product performance, it will ultimately depend on actual circumstances and is in no event a guarantee of achieving any specific results. Nothing in this document should be treated as a warranty by Dow.

Printed in the U.S.A.

©™ Trademark of The Dow Chemical Company ("Dow") or an affiliated company of Dow

Form No. 177-03674-0518 CDP