DuPont Ion Exchange Resins
Preventing Silica Fouling of Weak Base Anion Resins

Silica Fouling

Occasionally, some plants experience weak base anion resin which clumps together due to silica polymerization. Common operating symptoms include short run length, increased pressure drop and high WBA effluent conductivity during the run (due to channeling), and the inability to backwash the bed. When the vessel is opened and samples are taken, the resin beads will be clumped together and a gummy substance may even be present. This document is an explanation of the most probable cause, and ideas on how to correct the problem.

Most demineralizers that use weak base anion resins for water treatment also use strong base anion resins. In order to minimize the amount of caustic used to regenerate the resins, a technique known as thoroughfare regeneration is generally used. Thoroughfare regeneration is the use of waste caustic from the SBA vessel to regenerate the WBA resin. Since WBA resins regenerate very efficiently, even waste caustic will return the resin to the free base form.

The primary concern with a thoroughfare regeneration is ensuring that most of the impurities from the SBA resin are dumped to the drain before the thoroughfare begins. If significant amounts of silica are present when the thoroughfare begins, it may polymerize upon contacting the acidic WBA resin, leading to the problems described above.

First, the problem needs to be corrected. Generally, the first third of the regenerant from the SBA vessel is discarded to the drain. A variety of changes in SBA operating conditions may have caused the silica peak to shift, including changes in caustic concentration, caustic temperature, or installation of new SBA resin. Correcting the situation is usually accomplished by discarding additional caustic to the drain before the thoroughfare regeneration begins. To be confident that the right amount is discarded, an elution study can be performed. Using a two step caustic injection, for example 2% and 4% NaOH, gives another alternative to dilute the silica peak.

Layered bed configurations with SBA and WBA resins in the same vessel generally operate with lower caustic concentrations and more uniform flow rates and so they tend to be less prone to silica precipitation.

Finally, the weak base anion resin needs to be cleaned. A series of hot caustic soaks should remove most of the polymerized silica and allow continued operation. In some extreme cases, the weak base anion resin may need to be replaced.

Note that WBA resin clumping can also be caused by organics build-up on the resin or a combination of organics and silica.
All information set forth herein is for informational purposes only. This information is general information and may differ from that based on actual conditions. Customer is responsible for determining whether products and the information in this document are appropriate for Customer’s use and for ensuring that Customer’s workplace and disposal practices are in compliance with applicable laws and other government enactments. The product shown in this literature may not be available for sale and/or available in all geographic areas where DuPont is represented. The claims made may not have been approved for use in all countries. Please note that physical properties may vary depending on certain conditions and while operating conditions stated in this document are intended to lengthen product lifespan and/or improve product performance, it will ultimately depend on actual circumstances and is in no event a guarantee of achieving any specific results. DuPont assumes no obligation or liability for the information in this document. References to “DuPont” or the “Company” mean the DuPont legal entity selling the products to Customer unless otherwise expressly noted. NO WARRANTIES ARE GIVEN; ALL IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE ARE EXPRESSLY EXCLUDED. No freedom from infringement of any patent or trademark owned by DuPont or others is to be inferred.

DuPont™, the DuPont Oval Logo, and all trademarks and service marks denoted with ™, SM or ® are owned by affiliates of DuPont de Nemours Inc. unless otherwise noted. ©2020 DuPont.