A highly efficient process to desalinate seawater has been installed at the Limassol desalination plant using the latest innovative technology from The DuPont Chemical Company. The facility uses DuPont™ Ultrafiltration and DuPont FilmTec™ Reverse Osmosis membranes as core desalination technology and AmberLite™ PWA10 Boron Selective Resin as a polisher to help meet the strict Boron quality requirements. In addition, Limassol has other, state of the art design features, such as iSD (internally Staged Design), partial RO permeate split and AmberLite™ technology to consistently, reliably and sustainably produce 50,000 m³/day of potable water.

Site Information

Location: Limassol, Cyprus
Plant Capacity: 50,000 m³/day drinking water
End-User: Water Development Department of Cyprus
Start-Up: 2013
Operation: MN Limassol Water Co.

Pretreatment – Ultrafiltration:

An advanced pretreatment using DuPont™ Ultrafiltration technology has been installed ahead of the Reverse Osmosis system. Ultrafiltration ensures a reliable and constant high quality RO feed water supply, ensuring stable operation and extending Reverse Osmosis service life.

The UF system contains a total of 1,056 DOW™ Ultrafiltration SFD-2880 modules arranged in 6 identical trains. The system is designed to operate at a flux of 65 l/h/m² and a recovery of 94%.

Key features of DuPont™ Ultrafiltration technology:

- Asymmetric hollow fiber membranes
- Outside-In flow configuration allowing low energy consumption and stable operation
- Hydrophilic PVDF hollow fibers providing superior physical strength and chemical resistance and low fouling tendency
- Uniform ultra-fine pores (0.03mm nominal) ensuring excellent filtrate quality
- High active area (77 m² per module) enabling low footprint and low capital expenses

Water characteristics and quality requirements

Raw water quality

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total hardness</td>
<td>ppm CaCO₃</td>
<td>1200</td>
</tr>
<tr>
<td>Total Fe</td>
<td>mg/L</td>
<td>6</td>
</tr>
<tr>
<td>Turbidity</td>
<td>NTU</td>
<td>30 to 40</td>
</tr>
<tr>
<td>Temperature</td>
<td>°C</td>
<td>10 to 35</td>
</tr>
<tr>
<td>Oil</td>
<td>mg/L</td>
<td>5 to 10</td>
</tr>
<tr>
<td>pH</td>
<td></td>
<td>7 to 8</td>
</tr>
</tbody>
</table>

Specified product water quality

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boron</td>
<td>≤ 0.5 mg/L</td>
</tr>
<tr>
<td>TDS</td>
<td>≤ 420 mg/L</td>
</tr>
</tbody>
</table>

Blended product water after Boron Selective Resin and Reverse Osmosis System
System Information

Reverse Osmosis:
A total of 4,800 DuPont FilmTec™ Reverse Osmosis membrane elements are installed in 4+1 trains. The system is designed to operate at 45% of recovery.

Optimized RO system design featuring:
- 440 ft² area of membrane per element
- Internally Staged Design (ISD) combining FILMTEC™ SW30XHR-440i and FILMTEC™ SW30HRLE-440i elements within the pressure vessel
- Permeate Split Design

Boron Selective Resin:
An ion exchange resins system is installed to further polish the rear permeate stream from the RO system enhancing the boron removal of the system. The system will contain 54 m³ of AmberLite™ PWA10 and will treat a flow between 12,000 – 25,000 m³/day (depending on the water temperature). AmberLite™ PWA10 resin features very high selectivity for boron and low risk of interference with other salts which makes it highly suitable for removal of boron from RO permeate water.