DuPont™ Tyvek® for Medical and Pharmaceutical Packaging
Presenters

Our Expert

Jose R Arevalo
Business Development Manager
MDM Accounts & Latin America
Packaging News
DuPont Medical and Pharmaceutical Protection

Moderator

Daphne Allen
Editor
Pharmaceutical & Medical
The Vision of DuPont
To be the world’s most dynamic science company, creating sustainable solutions essential to a better, safer, healthier life for people everywhere.
DuPont is a catalyst for innovation.

Our wealth of science, combined with market knowledge and technical expertise, provides the raw materials needed for exploration and innovation.

Pioneer Hi-Bred
Crop Protection
Nutrition & Health
Electronics & Communications
Performance Coatings
Performance Polymers
Packaging & Industrial Polymers
Protection Technologies
Building Innovations
Sustainable Solutions
Chemicals & Fluoroproducts
Titanium Technologies
Industrial Biosciences

DUPONT™ TYVEK® FOR MEDICAL AND PHARMACEUTICAL PACKAGING 4
Market-Driven Innovations

- Corian®
- Nomex®
- Kevlar®
- Teflon®
- Tyvek®
- Photovoltaics
- Oil and Gas
- Sorona®
- Pioneer Hi-Bred Corn
- Lightweighting Solutions
The Discovery of DuPont™ Tyvek®

Jim White – 1955

High Density Polyethylene (HDPE) Spun Fibers
History of DuPont™ Tyvek®

1955
Tyvek® Discovered

1959
Tyvek® Trial Uses

1967
Commercial Production

1972
Sterile Packaging
DuPont™ Tyvek® Manufacturing Locations

- Luxembourg City, Luxembourg
 - ISO 9001 Certified
- Richmond, VA USA
 - ISO 9002 Certified
DuPont™ Tyvek® Manufacturing Locations

Luxembourg City, Luxembourg
What is DuPont™ Tyvek® for Medical and Pharmaceutical Packaging?

- High-density polyethylene (HDPE)
- Flashspun and bonded using heat and pressure
- No binders/fillers, only virgin polymer
- No corona treatment
- No anti-stat treatment
- Continuous filaments formed into a sheet
- Fibers randomly distributed, non-directional
- Average diameter = 4 microns

High porosity for all sterilization gases

Tough, continuous fibers create a tortuous path for superior microbial barrier

Tough, continuous fibers for strength and puncture resistance
Unique Structure of DuPont™ Tyvek®

Top view (200x) Cross-sectional view (200x)
How Is DuPont™ Tyvek® Made?

Polymer
- Raw Material
- Solutioning System
- Spinning Machine

Processing Aid
- Processing Aid Recovery

SOLUTION & SPINNING:
- Solutioning System
- Spinning Machine

Bonding:
- Soft Structure Finishing
- Hard Structure Finishing

Finishing:
- Slitting & Packaging
- Finished Product Inventory
Spinning to Bonding

Flashspun using a proprietary process

Then bonded

DUPONT™ TYVEK® FOR MEDICAL AND PHARMACEUTICAL PACKAGING
Bonding Process

For Hard-Structure DuPont™ Tyvek®

Unwind Bonding Surface Treatment (if applicable) Wind-Up

No anti-stat or corona treatment for Tyvek® medical and pharmaceutical packaging styles
Applications for DuPont™ Tyvek®

Soft Structure

Protective Apparel, Car Covers, Jackets and Bags

Hard Structure

HomeWrap®
Tag and Banners
Envelopes
Cocoon Wrapper and Wrapping System
DuPont™ Tyvek® medical and pharmaceutical packaging styles

A standard of excellence

- Tyvek® 1073B (2.20 oz/yd²)
- Tyvek® Asuron™ (1.99 oz/yd²)
- Tyvek® 1059B (1.90 oz/yd²)
- Tyvek® 2FS™ (1.76 oz/yd²)
Microbiological Barrier (ASTM F1608)

![Bar chart showing LRV values for different materials.]

<table>
<thead>
<tr>
<th>Material</th>
<th>LRV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tyvek® 1073B (uncoated)</td>
<td>5.2</td>
</tr>
<tr>
<td>Tyvek® Asuron® (uncoated)</td>
<td>4.7</td>
</tr>
<tr>
<td>Tyvek® 1059B (uncoated)</td>
<td>4.7</td>
</tr>
<tr>
<td>Tyvek® 2FS® (uncoated)</td>
<td>3.2</td>
</tr>
<tr>
<td>Medical-grade papers</td>
<td>1.7-2.9</td>
</tr>
<tr>
<td>Synthetic fiber-reinforced paper</td>
<td>1.3</td>
</tr>
</tbody>
</table>
Superior Microbial Barrier Protection
Three Mechanisms of Filtration Theory

Interception

Inertial Impaction

Diffusion
Interception

- Occurs when the air stream that a particle is following is split by a filter fiber
- A particle is captured when the air stream it is following brings it sufficiently close to a filter fiber
- Interception is the primary capture mechanism for particles with diameters between 0.2 µm and 2.0 µm

Circle = fiber Dashed line = air stream
Inertial Impaction

- A particle is captured by a fiber as it deviates from the air stream it is following.
- Most effective on particles with diameters >2 µm and higher internal velocities.
- Effectiveness is related to particle mass and speed of air stream.
Diffusion

- Interception by a fiber due to random particle motion (Brownian motion) and, for some materials, electrostatic attraction
- Most effective on particles <0.2 µm diameter and low flow rates
- Dependent on number of fibers encountered
Fiber Comparison

Small fibers = filtration

Large fibers = strength

All large fibers, no tiny fibrils

DuPont™ Tyvek®

Latex-saturated paper
Large Fiber Diameter

- Less flow distortion increases flow rate
- Reduces chance of capture by diffusion
- Straighter flow reduces chance of impaction
Small Fiber Diameter

- Increased flow path distortion decreases flow rate
- Increasing capture by diffusion
- Frequent changes in flow direction increase capture by impaction
Structure Comparison—DuPont™ Tyvek® and Medical-Grade Paper

DuPont™ Tyvek®
- Tough, continuous fibers (average diameter = 4 microns)
- Outstanding resistance to microbial penetration

Medical-Grade Paper
- Small number of short fibers
- Fewer layers/less tortuous path
Particle Penetration (ASTM F2638)
Spencer Puncture Properties (ASTM D3420, procedure B)
Elmendorf Tear (MD) Properties (ASTM D1424 & EN 21974)

MD = machine direction
Material Compatibility with Various Sterilization Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>DuPont™ Tyvek®</th>
<th>Coated, latex saturated medical-grade paper</th>
<th>Medical film</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethylene Oxide (EO)</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Gamma Radiation</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Electron-beam Radiation</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Steam</td>
<td>Yes¹</td>
<td>Yes²</td>
<td>No</td>
</tr>
<tr>
<td>STERRAD¹</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

¹. Under controlled conditions (250°F to 260°F [121°C to 127°C]) at 30 psi for 30 minutes.
². May become brittle.
Unique Structure of DuPont™ Tyvek®

Top view (200x)

Cross-sectional view (200x)
Storage

- Store under clean and dry conditions
- Take care to avoid dirt being attracted to DuPont™ Tyvek®
- At low temperatures, DuPont™ Tyvek® retains toughness and flexibility after exposure to -70°C
- At high temperatures, DuPont™ Tyvek® begins to shrink at 118°C and melts at 135°C
- DuPont™ Tyvek® can maintain sterility for at least five years, providing package integrity is not compromised (demonstrated by long-term shelf-life study conducted at the DuPont Haskell Laboratory for Toxicology)
DuPont™ Tyvek® Can Be Printed Using Standard Commercial Printing Equipment

- Flexography
- Offset Lithography
- Thermal Transfer
- Ink Jet
- Cool-Process Laser

For additional information about printing on Tyvek®, refer to the DuPont™ Tyvek® Users Manual at www.graphics.dupont.com
DuPont™ Tyvek® Delivers Trusted Protection

- Outstanding resistance to microbial penetration
- Significantly reduced risk of package failure during shipping and handling
- Low risk of device contamination when opened
- Compatibility with a broad range of sterilization methods
DuPont Medical and Pharmaceutical Protection—An Industry and Technology Leader

- Helping speed up your compliance process
- Providing packaging science support
- Conducting educational seminars
- Participating in industry standards organizations

DuPont™ Tyvek® in 2012 and Beyond

To meet growing global demand and to help ensure greater continuity and flexibility of future supply, DuPont will be transitioning Tyvek® 1073B and Tyvek® 1059B to manufacturing lines that use our latest flash-spinning technology.

Our goal is to make this transition process seamless for the healthcare industry.

If you have questions, visit MedicalPackaging.DuPont.com to schedule a meeting with one of our DuPont experts.
Q&A… Thank you!

Thank you for joining today’s presentation ‘DuPont™ Tyvek® for Medical and Pharmaceutical Packaging’.

Any questions, contact:
Jose R Arevalo
Business Development Manager, MDM Accounts & Latin America
DuPont Medical and Pharmaceutical Protection
Jose.R.Arevalo@usa.dupont.com

Daphne Allen
Editor
Pharmaceutical & Medical Packaging News
Daphne.Allen@ubm.com
This information is based upon technical data that DuPont believes to be reliable. It is subject to revision as additional knowledge and experience are gained. DuPont makes no guarantee of results and assumes no obligation or liability in connection with this information. It is intended for use by persons having technical skill for evaluation under their specific end-use conditions at their own discretion and risk. Since conditions of use are outside our control, we make no warranties, expressed or implied, including without limitations, no warranties of merchantability or fitness for a particular use and assume no liability in connection with any use of this information. This information is not intended as a license to operate under or a recommendation to infringe any patent or technical information of DuPont or others covering any material or its use.

Copyright © 2011 DuPont. All rights reserved. The DuPont Oval Logo, DuPont™, The miracles of science™, Tyvek®, Tyvek® Asuron™ and Tyvek® 2FS™ are trademarks or registered trademarks of E.I. du Pont de Nemours and Company or its affiliates. STERRAD® is a registered trademark of Advanced Sterilization Products. (08/11)