Medical Packaging

A high-level overview of the requirements of medical packaging standards

Dec 2012

Thierry Wagner
Regulatory Affairs Director
Europe, Middle East and Africa
DuPont Medical & Pharmaceutical Protection
Learning Objectives

• What are the key medical packaging standards and what is their global impact?

• What are the basic functions of medical packaging?

• Why is it so difficult to test for sterility?

• What is the process to overcome these difficulties and to achieve a high level of patient protection?
Global Medical Packaging Standards

PART 1 FOCUS IS ON MATERIALS AND DESIGN

PART 2 FOCUS IS ON PACKAGING PROCESS VALIDATION
EN ISO 11607 Global Status

US
- Adopted as American National Standard without revision
- “Recognized” by the FDA Centers for Devices and Radiological Health (CDRH)

Europe
- Both documents approved as European Norms (EN)
- Harmonized Standard (published in the Official Journal)
EN ISO 11607 Global Status

Japan
- Japanese versions available from Japan Association for Medical Instrumentation (JAMI)
- Adopted as Japanese National Standard

China
- Previous version adopted as National Standard
- Current versions undergoing adoption as Chinese National Standard

Other Known Adoption Activities
- Taiwan, Singapore, Australia, Korea, Canada,
- Russia (previous version) …
Sterility!
Sterilisation of packaged devices

Sterilisation Processes

Radiation
- Gamma
- Electron beam

Gaseous
- Ethylene oxide

Low temperature oxidative

VHP
High temperature steam

Key Questions:
- Does the packaging material allow for sterilisation?
- Is the material compatible with the sterilisation process?
- After sterilisation, does the material and the package preserve sterility?
Historically: sterility viewed as absolute condition

Today: using sterility assurance level (SAL) to express probability of survivors (typically 10^{-6})

Before 1970: sterility test to assess sterilization efficiency

The problem: with sterility testing, there is no meaningful statement possible regarding the entire population
Let’s assume the SAL of a batch is 10^{-2} which is relatively high.

- With one sample, the probability to accept that batch is $1 - 10^{-2} = 99\%$
- With 2 samples $(1 - 10^{-2}) \times (1 - 10^{-2}) = 98\%$
- With n samples $(1 - 10^{-2})^n$
- With 20 samples the batch is still accepted in 82% of the cases
- With 300 samples (with no false positives or negatives) the batch is accepted in 5% of the cases, which is still not really acceptable.
- With a SAL of $10^{-6} \rightarrow$ 3 million samples to achieve a similar confidence.
Conclusion

• Sterility cannot be verified

• What cannot be verified, needs to be validated

• For this reason sterilisation and medical packaging standards introduce
 - a number of requirements that have to be met and
 - validation steps that have to be followed successfully

• The overall objective is to achieve a high level of patient safety and protection
Sterile Barrier Systems

- Must prevent the ingress of microorganisms in order to maintain sterility

Films and non-porous materials
- Must be free of holes and cracks

Porous barrier materials
- Allow the sterilisation gasses to enter and exit the package
- Allow the package to adapt to changing pressures and temperatures as well as volume changes
- Adequate **Microbial Barrier Properties** are required!

Integrity of seals must be guaranteed
Protection through Transportation & Storage

Will your design survive and protect as required?

Performance & Stability Testing is required to qualify the design.
Handling & Aseptic Opening

Sterility!
Basic Functions of Medical Packaging

Allow for sterilization

Product protection
- Physical protection from damage and environment
- Maintain sterility and integrity until point of use
- Microbial barrier

Easy opening and aseptic presentation

Identify the product, clearly state information and cautions
What do EN ISO 11607 - Parts 1 & 2 Say?

International Standards, EN ISO 11607 – Parts 1 & 2 “Packaging for terminally sterilized medical devices”, simply state that

You must:

- Design to minimize the safety hazard while meeting the requirements
- Test your package (validate the design)
- Validate your packaging process

And maintain your packaging process under control
The miracles of science
Disclaimer

This information corresponds to our current knowledge on the subject and may be subject to revision as new knowledge becomes available.

It is your responsibility to investigate other sources of information on this issue that more appropriately addresses your product and its intended use. This information is not intended for use by you or others in advertising, promotion, publication or any other commercial use. DUPONT MAKES NO WARRANTIES OF ANY KIND REGARDING THIS INFORMATION AND ASSUMES NO LIABILITY WHATSOEVER IN CONNECTION WITH ANY USE OF THIS INFORMATION. This information is not a license to operate under, or intended to suggest infringement of, any existing trademarks or patents.

© 2013 DuPont. All rights reserved. The DuPont Oval Logo, The miracles of science™, and Tyvek® are registered trademarks or trademarks of E.I. du Pont de Nemours and Company or its affiliates.